- •4. Уравнение Гей-Люсака.
- •6. Уравнение состояния газа Ван-дер-Ваальса.
- •10. Применение первого закона термодинамики к различным процессам. Энтальпия и ее физический смысл.
- •11. Закон Гесса – следствие первого начала термодинамики. Стандартные энтальпии образования. Стандартные энтальпии сгорания.
- •12. Обратимые и необратимые в термодинамическом смысле процессы; самопроизвольные процессы, максимальная и максимально полезная работа.
- •14. Изменение энтропии изолированной системы; критерии достижения термодинамического равновесия в изолированной системе.
- •15. Основной смысл и значение второго закона термодинамики.
- •16. Статистическая природа второго начала термодинамики.
- •1) Расчеты изменения энтропии при изотермических процессах
- •2) Расчет изменения энтропии в неизотермических процессах
- •3) Расчет изменения энтропии сложного процесса
- •19. Особенности термодинамического описания процессов в закрытых и открытых системах. Клетка как пример открытой системы.
- •21. Взаимосвязи между внутренней энергией, работой и "связанной энергией" в изобарно-изотермическом процессе.
- •22. Химический потенциал как мера изменения энергии системы за счет изменения массы исходных и конечных продуктов реакции.
- •23. Уравнение изотермы химической реакции (Закон действующих масс).
- •24. Зависимость константы химического равновесия от температуры. Интегральная и дифференциальная форма уравнения изобары.
- •25. Взаимосвязь между константой химического равновесия и изобарно-изотермическим потенциалом.
- •28. Уравнение Клаузиса-Клапейрона, 1-ое и 2-ое уравнения Рауля.
- •29. Коллигативные свойства растворов (температура кипения, температура замерзания, осмотическое давление, давление насыщенного пара).
- •33. Основы теории сильных электролитов. Активность, коэффициенты активности.
- •35. Особенности описания свойств сильных электролитов при физиологических значениях ионной силы.
- •34. Уравнение Дебая-Хюккеля и пределы его применения.
- •36. Буферные растворы и механизм их действия. Буферные системы организма.
- •37. Механизм химической реакции как совокупность отдельных элементарных стадий.
- •38. Скорость химической реакции и понятие лимитирующей стадии процесса.
- •39. Порядок и молекулярность реакции. Применение порядка химической реакции для описания ее механизма.
- •40. Количественные соотношения между скоростью химической реакции и концентрацией реагентов в зависимости от порядка химической реакции.
- •41. Теория активных соударений (Аррениуса). Понятие об энергии активации и ориентационном (вероятностном) факторе. Ограничения теории активных соударений.
- •43. Термодинамическая форма основного уравнения теории переходного комплекса
- •44. Сравнительный анализ теории активных соударений и теории переходного комплекса
- •45.Кислотно-основной катализ как пример гомогенных каталитических процессов.
- •47. Сравнительный анализ мультиплетной теории гетерогенного катализа и теории активных ансамблей (Кобозев).
- •48. Ферменты – биологические катализаторы. Основные факторы, определяющие сложный характер зависимости скорости реакции ферментативного процесса от концентрации субстрата.
- •49. Уравнение Михаэлиса-Ментен, условия его применения
- •51. Основные способы линерилизации уравнения Михаэлиса-Ментен для графического определения величин Km и Vmax. Сравнительный анализ их преимуществ и недостатков.
- •52. Окислительно-восстановительные реакции и электрохимия. Классификация и характеристика электрохимических процессов.
- •53. Механизм возникновения потенциала Нернста (электродный потенциал).
- •54.Диффузный потенциал, механизм возникновения и биологическая значимость.
- •55. Межжидкостный фазовый потенциал, механизм возникновения и биологическая значимость.
- •56.Электрохимические элементы и их использование в биологических исследованиях
- •57. Типы электродов(электроды 1,2 типа и редокс-электроды).
- •58. Электродные реакции, правила записи и потенциалообразующие ионы в случае электродов разных типов
- •59. Уравнение Нернста для электродов разных типов: стандарт электроды, стандартный водородный электрод.
- •60. Примеры использования электрохимических элементов в биологических исследованиях.
- •61.Поверхностные явления и адсорбция. Обзор сорбционных явлений.
- •62. Природа адсорбционного взаимодействия. Поверхностное натяжение и природа вещества.
- •63. Равновесие фаз при искривлённой поверхности раздела. Уравнение Лапласса.
- •64. Уравнение Томпсона и его следствия.
- •65. Роль сорбционных явлений в биологии.
- •66. Связь между уравнением Ленгмюра и уравнением адсорбции по Гиббсу.
- •67.Основные направления исследований и задачи коллоидной химии.
- •68. Классификация коллоидных систем по кинетическим свойствам дисперсной фазы, по размеру частиц дисперсной фазы, по агрегатному состоянию дисперсной фазы и дисперсной среды.
- •69. Коллоидные растворы и их основные свойства. Явление электрофореза.
- •70. Диализ и электродиализ как способы очистки коллоидных растворов от примесей.
- •71. Оптические свойства коллоидных растворов. Уравнение Рэллея и условия его применения.
- •72. Голубизна неба, красный закат как отражение оптических свойств коллоидных систем.
- •73. Молекулярно-кинетические свойства коллоидных растворов.
- •74. Описание механизма броуновского движения как основы молекулярно-кинетической теории строения вещества.
- •75. Уравнения Эйнштейна, Смолуховского и их использование для доказательства молекулярно-кинетической теории строения вещества.
- •76.Кинетическая устойчивость дисперсионных систем и седиментационное равновесие.
- •77. Седиментационное равновесие. Скорость оседания (всплытия) частиц дисперсной фазы. Методы достижения седиментационного равновесия.
- •78. Строение коллоидных частиц.
- •79.Электроосмос и электрофорез. Электрокинетический потенциал и механизм его возникновения
- •80.Равновесие Гиббса-Доннана и его значение для поддержания постоянного солевого состава клетки
- •81. Лиофобные и лиофильные коллоидные системы. Основные причины высокой термодинамической устойчивости лиофильных коллоидых систем.
- •82. Агрегативная устойчивость коллоидных систем
- •84. Свойства растворов высокомолекулярных соединений.
21. Взаимосвязи между внутренней энергией, работой и "связанной энергией" в изобарно-изотермическом процессе.
Максимальная полезная работа, совершаемая системой в обратимом изобарно-изотермическом процессе, равна уменьшению энергии Гиббса. уменьшение энергии Гиббса в необратимом процессе больше производимой системой работы (полезной). Из этого следует, что изменение внутренней энергии системы можно представить как сумму трех слагаемых: – часть внутренней энергии, способная при изобарно-изотермических условиях превращаться в работу; – часть внутренней энергии, затрачиваемая системой на совершение работы против сил внешнего давления; – связанная энергия, представляющая собой часть внутренней энергии, которая в указанных условиях не может быть превращена в работу. «Связанная энергия» тем больше, чем больше энтропия данной системы. Таким образом, энтропию можно рассматривать как меру «связанной энергии».
22. Химический потенциал как мера изменения энергии системы за счет изменения массы исходных и конечных продуктов реакции.
Химическую реакцию можно рассматривать с точки зрения изменения в системе количеств продуктов реакции и исходных веществ.
Изменение энергии системы с увеличением числа молей данного вещества на единицу времени при неизменных прочих параметрах системы можно рассмотреть на следующей простой модели.
В сосуде при постоянном давлении и температуре находятся три газа: азот n(N2), кислород n(О2) и водород n(H2) в одинаковых количествах:
n(N2) = n(O2) = n(H2).
Из сосуда можно вывести или (ввести) один моль какого-либо газа, например кислорода. Очевидно, для этого нужно затратить энергию:
Определим изменение энергии Гиббса системы от изменения давления.
Так как V = const, следовательно, изменение i в системе пропорционально изменению энергии Гиббса системы. Из этого следует, что коэффициент пропорциональности i характеризует изменение энергии Гиббса системы, связанной с изменением количества вещества.
Для одного моля газа (идеального) V = RT/Р.
С другой стороны, можно рассматривать любой вид энергии как произведение двух величин: фактора интенсивности и фактора емкости.
-
Типы энергии
Интенсивная величина
Экстенсивная величина
Работа в гравитационном поле
h (высота)
m (масса)
Поверхностная энергия
(поверхностное натяжение)
S (площадь)
Электрическая работа
U (напряжение)
q (заряд)
Работа расширения газа
Р (давление)
V (объем)
Механическая энергия (работа)
F (сила)
l (расстояние, длина)
Химическая работа
Химический потенциал
n (кол-во вещества)
Интенсивная величина (фактор интенсивности), показывающая изменение энергии системы с изменением массы, носит название химического потенциала.
