Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физкал химия.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
405.94 Кб
Скачать

12. Обратимые и необратимые в термодинамическом смысле процессы; самопроизвольные процессы, максимальная и максимально полезная работа.

Необратимые и обратимые процессы. Термодинамически обратимый процесс – это процесс, в результате которого система может возвратиться в исходное состояние без изменений окружающей среды. Обратимые процессы протекают с бесконечно малыми скоростями. Только при этих условиях система в каждый момент времени будет находиться в состоянии, бесконечно мало отличающемся от равновесного. Такие процессы называют равновесными. Работа, которую совершает система в обратном процессе будет равна работе прямого процесса, но обратной по знаку. Термодинамически необратимый процесс – это процесс, после которого система не может возвратиться в исходное состояние без изменений в окружающей среде. Максимальная работа реакции, работа, к-рая производится термодинамич. системой при протекании в ней обратимой хим. р-ции. Максимальная работа реакции Wмакс складывается из работы по преодолению внеш. давления р - мех. работы где V - объем системы, и работы, к-рая не сопровождается изменением объема системы и наз. максимальной полезной работой р-ции W'макс. Внутренняя энергия представляет собой полную энергию системы. Однако второе начало термодинамики запрещает превратить всю внутреннюю энергию в работу. Можно показать, что максимальная полная работа (как над средой, так и над внешними телами), которая может быть получена от системы в изотермическом процессе, равна убыли свободной энергии Гельмгольца в этом процессе.

Вывод: Работа, совершаемая системой в обратимом процессе, всегда больше, чем в необратимом:

Wобр > Wнеобр. (3.4)

Все реальные процессы в той или иной мере могут приближаться к обратимым. Работа, производимая системой, достигает максимального значения, если система совершает обратимый процесс:

Wобр = Wmax. (3.5)

Работу, производимую системой при переходе из одного состояния в другое, в общем случае можно представить как сумму работы расширения и других видов работы (работы против электрических, поверхностных, гравитационных и т.п. сил). Сумму всех видов работы, производимой системой за вычитом работы расширения, называют полезной работой. Если переход системы из состояния 1 в состояние 2 был осуществлен обратимо, то работа этого процесса будет максимальной (Wmax), а работа за вычетом работы расширения – максимальной полезной работой (W'max):

Wmax = W'max + PΔ V;

W'max = Wmax - PΔV.

13. Второе начало термодинамики. Энтропия. Второе начало термодинамики дополняет первое начало, указывая на ограничения и на направление переходов энергии. Существует несколько формулировок второго начала термодинамики: 1. Невозможен самопроизвольный переход тепла от тела менее нагретого к телу более нагретому. 2. Невозможно превратить тепло в работу, не производя никакого другого действия, кроме охлаждения источника тепла.

Энтропия. Протекание самопроизвольного процесса в изолированной системе связано с возрастанием некоего параметра состояния системы. Этот параметр получил название энтропии. Статистическая термодинамика показывает, что энтропия может рассматриваться как сумма составляющих, относящихся к различным формам движения частиц. Принято группировать их по характеру движения частиц, рассматривая следующие составляющие энтропии: энтропию поступательного движения молекул, энтропию вращательного движения молекул, энтропию вращательного движения атомов и атомных групп, содержащихся в молекуле, энтропию колебательного движения атомов и атомных групп и энтропию движения электронов. Для каждого вещества энтропия возрастает при всех процессах, вызываемых движением частиц (испарение, плавление, расширение газов, диффузия). Энтропия возрастает при ослаблении связей между атомами в молекуле и при разрыве их, т.е. диссоциации молекул на атомы или атомные группы. С упрочением этих связей энтропия уменьшается.