- •Ряды динамики
- •1.Понятие и классификация рядов динамики
- •2.Ряды динамики как основной источник прогнозирования в экономике
- •3.Аналитические показатели динамики
- •4.Среднее по рядам динамики
- •5.Компоненты ряда динамики
- •6.Виды трендовой компоненты
- •Метод проверки существенности разности средних
- •МетодФостера – Стюарта
- •7.Методы выявления основной тенденции (тренда) в рядах динамики
- •Метод усреднения по левой и правой половине
- •Метод укрупнения интервалов
- •Метод простой скользящей средней
- •Метод взвешенной скользящей средней
- •Выбор уравнения тренда
- •Выравнивание ряда динамики с помощью метода конечных разностей
- •Метод наименьших квадратов при расчете параметров полиномов
- •8.Модели сезонных колебаний
- •Индексы сезонности
- •Использование индексов сезонности для прогнозирования
- •9.Регрессионный анализ связных динамических рядов
- •Выявление автокорреляции в уровнях ряда динамики
- •Способ выявления автокорреляции в отклонениях от тренда или от регрессионной модели
- •Способы исключения или уменьшения автокорреляции в рядах динамики
- •10.Корреляция рядов динамики
- •Расчет парного коэффициента корреляции по уровням ряда динамики
- •Расчет парного коэффициента корреляции по отклонениям фактических уровней от выровненных по уравнению (тренду)
- •Расчет парного коэффициента корреляции по абсолютным отклонениям уровней ряда динамики
- •11.Элементы прогнозирования и интерполяции
- •Аналитическое выражение тренда
9.Регрессионный анализ связных динамических рядов
Многомерные временные ряды, показывающие зависимость результативного признака от одного или нескольких факторных, называют связными рядами динамики. Применение методов наименьших квадратов для обработки рядов динамики не требует выдвижения никаких предположений о законах распределения исходных данных. Однако при использовании метода наименьших квадратов для обработки связных рядов следует учитывать наличие автокорреляции (авторегрессии), которая не учитывалась при обработке одномерных рядов динамики, поскольку ее наличие способствовало более плотному и четкому выявлению тенденции развития рассматриваемого социально – экономического явления во времени.
Выявление автокорреляции в уровнях ряда динамики
В рядах динамики экономических процессов между уровнями, особенно близко расположенными, существует взаимосвязь. Ее удобно представить в виде корреляционной зависимости между рядами y1,y2,y3,…..ynh y1+h,y2+h,,…, yn+h. Временное смещение L называется сдвигом, а само явление взаимосвязи – автокорреляцией.
Автокорреляционная зависимость особенно существенна между последующими и предшествующими уровнями ряда динамики.
Различают два вида автокорреляции:
- автокорреляция в наблюдениях за одной или более переменными;
- автокорреляция ошибок или автокорреляция в отклонениях от тренда.
Наличие последней приводит к искажению величин средних квадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов регрессии, а так же проверку их значимости.
Автокорреляцию измеряют при помощи циклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (L). Этот сдвиг, именуемый временным лагом, определяет и порядок коэффициентов автокорреляции: первого порядка (при L=1), второго порядка (при L=2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента (первого порядка), так как наиболее сильные искажения результатов анализа возникают при корреляции между исходными уровнями ряда и теми же уровнями, сдвинутыми на одну единицу времени.
Тогда формулу коэффициента автокорреляции можно записать следующим образом:
Если ряд динамики состоит из уровней, среднее значение которых равно нулю то формула имеет вид:
Для суждения о наличии или отсутствия автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5% - го или 1% - го уровня значимости.
Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда же фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.
Способ выявления автокорреляции в отклонениях от тренда или от регрессионной модели
Таким способом является использование критерия Дарбина – Уотсона, который рассчитывается по формуле:
Теоретическое основание применения этого критерия обусловлено тем, что в динамических рядах как сами наблюдения, так и отклонения от них распределяются в хронологическом порядке.
При условии, что отклонения уровней от тенденции случайны, значения D, лежат в интервале 0-4, всегда будут находиться ближе к 2. Если автокорреляция положительная, то D<2; отрицательная -2≤D≤4. Следовательно, оценки, получаемые по критерию, являются не точечными, а интервальными. Их значение для трех уровней значимости (α=0,01, α=0,025 и α=0,05) с учетом числа наблюдений даны в специальных таблицах.
