
- •Основные гипотезы и допущения в сопротивлении материалов.
- •2. Внутренние силы. Метод сечений. Виды деформаций.
- •3. Допускаемые напряжения. Диаграммы растяжения пластических и хрупких материалов. Модуль упругости.
- •4. Напряжения при растяжении и сжатии. Закон Гука. Условие прочности
- •5. Деформации (продольные и поперечные) при осевом действии сил. Условие жесткости.
- •6.Три типа задач при расчете на прочность.
- •7. Деформация Гука при сдвиге
- •8. Кручение. Крутящий момент. Касательные напряжения. Условие прочности.
- •Напряжения при кручении
- •9. Определение угла закручивания. Условие жесткости при кручении. Зависимость между относительным углом закручивания и крутящим моментом Подставим выражение в формулу :
- •11. Напряжения при чистом и поперечном изгибе (нормальные и касательные). Условие прочности.
- •12. Подбор сечения при изгибе.
- •13)Определение перемещений при изгибе. Дифференциальное уравнение упругой линии.
- •14)Определение перемещений при изгибе. Метод начальных параметров
- •14.2)(Аналогичная теория, просто в дополнение)
- •15. Геометрические характеристики поперечных сечений Главные центральные оси инерции.
- •16. Напряженное состояние в точке. Обобщенный закон Гука.
- •17. Главные площадки и главные напряжения.
- •18. Определение напряжений на произвольных площадках. Круг Мора.
- •19.Закон парности касательных напряжений.
- •20. Сложное сопротивление. Понятие о теориях прочности.
- •21.Структурный анализ плоских механизмов. Определения: машина, механизм, звено, виды звеньев.
- •22. Кинематическая пара, кинематическая цепь.
- •23. Кинематические пары и их классификация.
- •24. Число степеней свободы и класс механизма.
- •Класс механизма
- •25.Группы Асура и их классификация.
- •26.Замена высших кинематических пар низшими.
- •27. Степень подвижности механизма.
- •29. Планы скоростей и ускорений и их свойства.
- •31. Кинетостатика. Силы инерции и момент сил инерции твердого тела.
- •17.2. Приведение системы сил инерции твердого тела к простейшему виду
- •32. Задачи силового расчета плоских механизмов. Уравновешивающая сила.
- •33. Силовой расчет группы Асура 2-го класса.
- •35. Назначение и виды передач. Основные виды зубчатых передач.
- •Фрикционная передача
- •Зубчатая передача
- •Ременная передача.
- •Червячная передача
- •Цепная передача
- •Наиболее типичные виды зубчатых передач
- •Реже используемые виды зубчатых передач
- •37. Эвольвента и её свойства
- •39. Передаточные отношения. Формулы для расчета передаточных отношений.
- •40. Планетарные механизмы.
- •41. Определение сил в зацеплении зубчатых передач.
- •42. Расчетная схема валов редуктора. Определение реакций в опорах подшипников. Построение эпюр изгибающих и крутящих моментов.
- •43. Проверочный и проектный расчет зубьев на контактную выносливость и изгиб. Выбор допускаемых напряжений.
- •44. Подшипники скольжения: конструкции, материалы, смазка.
- •46) Расчет шпонок
- •47) Расчет сварных соединений
43. Проверочный и проектный расчет зубьев на контактную выносливость и изгиб. Выбор допускаемых напряжений.
Аналитическими методами теории прочности можно получить точное решение для вычисления напряжений в контакте двух эвольвентных профилей. Однако это слишком усложнит задачу, поэтому на малой площадке контакта геометрия эвольвентных профилей корректно подменяется контактом двух цилиндров. Для этого случая используют формулу Герца-Беляева:
Здесь Епр – приведённый модуль упругости материалов шестерни и колеса
Епр = 2 Е1 Е2 / ( Е1 + Е2),
rпр – приведённый радиус кривизны зубьев
1/rпр = 1/r1 ± 1/r2, r1,2 = 0,5dW 1,2 sin aW ,
n - коэффициент Пуассона, qn - удельная погонная нормальная нагрузка, [s]HE - допускаемые контактные напряжения с учётом фактических условий работы.
Расчёт зубьев на контактную выносливость для закрытых передач (длительно работают на постоянных режимах без перегрузок) выполняют как проектировочный. В расчёте задаются передаточным отношением, которое зависит от делительных диаметров и определяют межосевое расстояние Аw (или модуль m), а через него и все геометрические параметры зубьев. Для открытых передач контактные дефекты не характерны и этот расчёт выполняют, как проверочный, вычисляя контактные напряжения и сравнивая их с допускаемыми.
Зуб представляют как консольную балку переменного сечения, нагруженную окружной и радиальной силами (изгибом от осевой силы пренебрегают). При этом окружная сила стремится изогнуть зуб, вызывая максимальные напряжения изгиба в опасном корневом сечении, а радиальная сила сжимает зуб, немного облегчая его напряжённое состояние.
sA = sизг А - sсжатия А.
Напряжения сжатия вычитаются из напряжений изгиба. Учитывая, что напряжения изгиба в консольной балке равны частному от деления изгибающего момента Mизг на момент сопротивления корневого сечения зуба W, а напряжения сжатия это сила Fr, делённая на площадь корневого сечения зуба, получаем:
.
где b – ширина зуба, m – модуль зацепления, YH – коэффициент прочности зуба.
Иногда используют понятие коэффициента формы зуба YFH = 1 / YH.
Таким образом, получаем в окончательном виде условие прочности зуба на изгиб : sA = qn YH / m ≤ [s]FE . Полученное уравнение решают, задавшись свойствами выбранного материала.
Допускаемые напряжения на изгиб (индекс F) и контактные (индекс H) зависят от свойств материала, направления приложенной нагрузки и числа циклов наработки передачи [s]FE = [s]F KF KFC / SF; [s]HE = [s]H KH / SH.
Здесь [s]F и [s]H – соответственно пределы изгибной и контактной выносливости; SF и SH – коэффициенты безопасности, зависящие от термообработки материалов; KFC учитывает влияние двухстороннего приложения нагрузки для реверсивных передач; KF и KH - коэффициенты долговечности, зависящие от соотношения фактического и базового числа циклов наработки. Фактическое число циклов наработки находится произведением частоты вращения колеса и срока его службы в минутах. Базовые числа циклов напряжений зависят от материала и термообработки зубьев.
Расчёт зубьев на изгиб для открытых передач (работают на неравномерных режимах с перегрузками) выполняют, как проектировочный. В расчёте задаются прочностными характеристиками материала и определяют модуль m, а через него и все геометрические параметры зубьев. Для закрытых передач излом зуба не характерен и этот расчёт выполняют, как проверочный, сравнивая изгибные напряжения с допускаемыми [42].
45) Подшипники качения: конструкции, основные типы, условные обозначения, материалы. Подшипники качения - это опоры вращающихся или качающихся деталей, в которых элементами качения служат шарики или ролики, установленные между кольцами и удерживаемые на определённом расстоянии друг от друга обоймой, называемой сепаратором. В процессе работы одно из колец подшипника как правило неподвижно. В некоторых типах подшипников одно или оба кольца могут отсутствовать (в них тела качения опираются непосредственно на поверхность вала или корпуса). Ряд подшипников качения выпускается с уплотнениями. В некоторых подшипниках качения может отсутствовать сепаратор. Посадочные поверхности внутреннего и наружного кольца как правило гладкие цилиндрические, но имеются разновидности колец с буртиками, с канавками, с цилиндрическими или сферическими выемками, с отверстиями для подвода смазки, с конической расточкой, с эксцентриситетом посадочной поверхности и поверхности беговой дорожки, с внутренним кольцом на разжимной втулке и т. п. Типы и конструктивные особенности подшипников качения приведены в ГОСТ 3395-89, а также в нормалях подшипниковых заводов.
Система условных обозначений установлена ГОСТ 3189-75 по следующим признакам: внутренний диаметр подшипника; серия диаметров или серия ширин; тип подшипника; конструктивная разновидность.