
- •Основные гипотезы и допущения в сопротивлении материалов.
- •2. Внутренние силы. Метод сечений. Виды деформаций.
- •3. Допускаемые напряжения. Диаграммы растяжения пластических и хрупких материалов. Модуль упругости.
- •4. Напряжения при растяжении и сжатии. Закон Гука. Условие прочности
- •5. Деформации (продольные и поперечные) при осевом действии сил. Условие жесткости.
- •6.Три типа задач при расчете на прочность.
- •7. Деформация Гука при сдвиге
- •8. Кручение. Крутящий момент. Касательные напряжения. Условие прочности.
- •Напряжения при кручении
- •9. Определение угла закручивания. Условие жесткости при кручении. Зависимость между относительным углом закручивания и крутящим моментом Подставим выражение в формулу :
- •11. Напряжения при чистом и поперечном изгибе (нормальные и касательные). Условие прочности.
- •12. Подбор сечения при изгибе.
- •13)Определение перемещений при изгибе. Дифференциальное уравнение упругой линии.
- •14)Определение перемещений при изгибе. Метод начальных параметров
- •14.2)(Аналогичная теория, просто в дополнение)
- •15. Геометрические характеристики поперечных сечений Главные центральные оси инерции.
- •16. Напряженное состояние в точке. Обобщенный закон Гука.
- •17. Главные площадки и главные напряжения.
- •18. Определение напряжений на произвольных площадках. Круг Мора.
- •19.Закон парности касательных напряжений.
- •20. Сложное сопротивление. Понятие о теориях прочности.
- •21.Структурный анализ плоских механизмов. Определения: машина, механизм, звено, виды звеньев.
- •22. Кинематическая пара, кинематическая цепь.
- •23. Кинематические пары и их классификация.
- •24. Число степеней свободы и класс механизма.
- •Класс механизма
- •25.Группы Асура и их классификация.
- •26.Замена высших кинематических пар низшими.
- •27. Степень подвижности механизма.
- •29. Планы скоростей и ускорений и их свойства.
- •31. Кинетостатика. Силы инерции и момент сил инерции твердого тела.
- •17.2. Приведение системы сил инерции твердого тела к простейшему виду
- •32. Задачи силового расчета плоских механизмов. Уравновешивающая сила.
- •33. Силовой расчет группы Асура 2-го класса.
- •35. Назначение и виды передач. Основные виды зубчатых передач.
- •Фрикционная передача
- •Зубчатая передача
- •Ременная передача.
- •Червячная передача
- •Цепная передача
- •Наиболее типичные виды зубчатых передач
- •Реже используемые виды зубчатых передач
- •37. Эвольвента и её свойства
- •39. Передаточные отношения. Формулы для расчета передаточных отношений.
- •40. Планетарные механизмы.
- •41. Определение сил в зацеплении зубчатых передач.
- •42. Расчетная схема валов редуктора. Определение реакций в опорах подшипников. Построение эпюр изгибающих и крутящих моментов.
- •43. Проверочный и проектный расчет зубьев на контактную выносливость и изгиб. Выбор допускаемых напряжений.
- •44. Подшипники скольжения: конструкции, материалы, смазка.
- •46) Расчет шпонок
- •47) Расчет сварных соединений
Основные гипотезы и допущения в сопротивлении материалов.
При построении теории расчета невозможно отразить все многообразие свойств реальных материалов, поэтому приходится делать целый ряд допущений, упрощающих расчеты.
1.В курсе сопротивления материалов рассматривается идеализированное тело, которое считается сплошным (без пустот) и однородным. Это означает, что свойства материала не зависят от формы и размера тела и одинаковы во всех его точках.
2.Упругие свойства материала во всех направлениях одинаковы, т.е. материал тела обладает упругой изотропией.
3.Тело считается абсолютно упругим, если после устранения причин, вызывающих деформацию, оно полностью восстанавливает свои первоначальные форму и размеры. Это допущение справедливо лишь при напряжениях, не превышающих предел упругости.
4.Деформации материала конструкции в каждой его точке прямо пропорциональны напряжениям в этой точке (закон Гука). Закон Гука справедлив лишь при напряжениях, не превышающих предел пропорциональности.
5.Деформации элементов конструкции в большинстве случаев настолько малы, что можно не учитывать их влияние на взаимное расположение нагрузок и на расстояние от нагрузок до любых точек конструкции.
6.Результат воздействия на конструкцию системы нагрузок равен сумме результатов воздействия каждой нагрузки в отдельности (принцип независимости действия сил).Принцип независимости действия сил не распространяется на работу внешних и внутренних сил и на потенциальную энергию.
7.Поперечное сечение, плоское до деформации, остается плоским и после деформации (гипотеза плоских сечений Бернулли)
2. Внутренние силы. Метод сечений. Виды деформаций.
Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой.
В брусе сечение проводят перпендикулярно его оси. Такое сечение называют поперечным.
Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия.
Виды деформации твердых тел
1. Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.
2. Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:
воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
разрушаться на пределе прочности
Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.
3. Деформация сжатия
Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».
В качестве примера можно привести тот же прибор что и в деформации растяжения немного выше.
Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.
4. Деформация сдвига
Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.
5. Деформация изгиба
Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.
Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.
6. Деформация кручения
Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.