
- •2. Скорость
- •3. Ускорение
- •4.Кинематика вращательного движения.
- •5. Сила. Масса тела и импульс
- •6. Принцип относительности Галилея
- •8. Силы трения
- •9. Сила тяжести. Вес.
- •10. Работа. Мощность. Кинетическая энергия.
- •14. Условия равновесия механической системы.
- •15. Закон сохранения импульса
- •16. Закон сохранения момента импульса
- •17. Силы инерции
- •18. Центробежная сила инерции. Сила Кориолиса.
- •19. Движение центра масс твердого тела
- •20. Вращение твердого тела вокруг неподвижной оси
- •21. Момент инерции.
- •22. Кинетическая энергия вращающегося твердого тела
- •23. Гироскопы.
- •24. Гармонические колебания
- •25. Маятники
- •26. Энергия гармонического осциллятора
- •27. Сложение колебаний одного направления.Биения.
- •28. Затухающие колебания
- •29. Вынужденные колебания
- •30. Линии и трубки тока. Неразрывность струи
- •31. Уравнение Бернулли для стационарного течения несжимаемой жидкости
- •32. Силы внутреннего трения.Формула Стокса.
- •33. Давление газа
- •34.Температура.
- •35. Уравнение состояния идеального газа.
- •36. Внутренняя энергия идеального газа. Количество теплоты.
- •37. Первое начало термодинамики
- •38. Теплоёмкость идеального газа
- •39. Работа, совершаемая газом при различных процессах
- •40. Термодинамические процессы
- •42. Холодильные машины
- •43. Поверхностное натяжение
- •44. Капиллярные явления
8. Силы трения
Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей. Сила трения зависит от материала трущихся поверхностей и от того, насколько сильно эти поверхности прижаты друг к другу. В простейших моделях трения (закон Кулона для трения) считается, что сила трения прямо пропорциональна силе нормальной реакции между трущимися поверхностями. В целом же, в связи со сложностью физико-химических процессов, протекающих в зоне взаимодействия трущихся тел, процессы трения принципиально не поддаются описанию с помощью простых моделей классической механики.
Разновидности силы трения
При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:
Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
Характер фрикционного взаимодействия
В физике взаимодействия трение принято разделять на:
сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения.
смешанное, когда область контакта содержит участки сухого и жидкостного трения;
жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.
9. Сила тяжести. Вес.
Под действием силы притяжения к Земле все тела падают с одинаковым относительно поверхности Земли ускорением g = 9.8 м/c2 - ускорение свободного падения. Следовательно, на всякое тело массы m действует сила, называемая силой тяжести.
=
(вращение Земли не учитываем)
Сила тяжести вызывает падение незакрепленных тел на Землю. Она равна силе, с которой неподвижное относительно Земли тело давит на горизонтальную опору (или действует на вертикальный подвес) вследствие тяготения к Земле. Точка приложения силы тяжести тела, т.е. точка приложения равнодействующих сил тяжести всех частиц тела, называется центром тяжести тела. Центр тяжести тела совпадает с его центром инерции и в телах правильной геометрической формы определяется как наиболее симметричная точка в телах неправильной геометрической формы как точка равновесия (момент сил относительно центра тяжести при равновесии должен быть равен 0).
Сила
,
с которой тело действует на подвес или
опору, называется весом тела. Если тело
не подвижно относительно Земли (v=0), то
.
Если тело и опора движутся с каким-нибудь
ускорением относительно Земли, то
2-й Закон Ньютона
m
+
.
По 3-му закону Ньютона
Тогда
=
Проекция на ось Y
I Система покоится
Y: mg – Fr = 0
G = mg
Вес равен силе тяжести.
II Система движется с ускорением вверх
Y: mg – Fr = -ma
G = m(g + a)
Вес больше силы тяжести.
III Система движется с ускорением вниз
Y: mg – Fr = ma
G = m (g - a)
Вес меньше силы тяжести