
- •Содержание
- •7.1. Основные понятия и определения 114
- •11. Задачи динамического программирования 127
- •1. Основные понятия и определения
- •2. Классификация экономико-математических моделей
- •3. Обобщенный алгоритм построения эмм
- •4. Метод Жордана-Гаусса
- •Табличная форма представления системы линейных уравнений
- •5. Задачи линейного программирования
- •5.1. Свойства задач лп
- •5.2. Графический (геометрический) метод решения задач лп
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •4 Этап: построение вектора-градиента.
- •5 Этап: построение прямой целевой функции.
- •6 Этап: определение оптимума целевой функции.
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •3 Этап: определение одр задачи линейного программирования.
- •Построение области допустимых решений задачи
- •5.3. Симплекс-метод решения задач лп
- •Представление исходной задачи в виде симплекс таблицы.
- •Исходная симплекс-таблица
- •2. Определение базисного решения.
- •3. Проверка совместности системы ограничений.
- •4. Проверка ограниченности целевой функции.
- •5. Проверка допустимости базисного решения.
- •6. Проверка оптимальности найденного базисного решения.
- •7. Проверка альтернативности найденного оптимального решения.
- •8. Определение разрешающего элемента.
- •8.1. Определение разрешающей колонки.
- •8.2. Определение разрешающей строки.
- •8.3. Определение разрешающего элемента.
- •9. Преобразование симплекс-таблицы.
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •8.2. Определение разрешающей строки.
- •II итерация:
- •1 Этап: составление симплекс-таблицы.
- •Симплекс-таблица II итерации
- •Симплекс-таблица II итерации
- •9 Этап: преобразование симплекс-таблицы.
- •III итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица III итерации
- •Симплекс-таблица III итерации
- •9 Этап: преобразование симплекс-таблицы.
- •IV итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица IV итерации
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •I итерация
- •1 Этап: составление исходной симплекс-таблицы.
- •2 Этап: определение базисного решения.
- •3 Этап: проверка совместности системы ограничений злп.
- •5.4. Двойственные задачи лп
- •5.5. Двойственный симплекс-метод решения задач лп
- •Симплекс-таблица оптимального решения исходной задачи
- •Симплекс-таблица оптимального решения исходной задачи
- •6. Задачи целочисленного (дискретного) лп
- •6.1. Задачи лп транспортного типа
- •6.2. Метод потенциалов
- •1. Проверка сбалансированности запасов и потребностей.
- •2. Разработка исходного опорного плана.
- •3. Проверка вырожденности опорного плана.
- •4. Расчет потенциалов.
- •5. Проверка плана на оптимальность.
- •6. Поиск «вершины максимальной неоптимальности» (вмн).
- •7. Построение контура перераспределения поставок.
- •8. Определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9. Получение нового опорного плана.
- •I итерация:
- •1 Этап: проверка сбалансированности запасов и потребностей.
- •2 Этап: разработка исходного опорного плана.
- •3 Этап: проверка вырожденности опорного плана.
- •4 Этап: расчет потенциалов.
- •5 Этап: проверка плана на оптимальность.
- •6 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •7 Этап: построение контура перераспределения поставок.
- •8 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9 Этап: получения нового опорного плана.
- •II итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •III итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •VI итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •6.3. Варианты заданий
- •6.4. Метод Гомори
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •I итерация
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •II итерация
- •1 Этап: формирование правильного отсечения.
- •2 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •3 Этап: решение скорректированной задачи.
- •6.5. Метод ветвей и границ
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •I итерация
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •II итерация
- •1 Этап: формирование исключаемой области.
- •2 Этап: формирование и решение задач с дополнительными ограничениями.
- •7. Теория игр
- •7.1. Основные понятия и определения
- •7.2. Платежная матрица. Нижняя и верхняя цена игры
- •Платежная матрица
- •Платежная матрица игры «поиск»
- •Платежная матрица игры
- •7.3. Решение игр в смешанных стратегиях
- •7.4. Правило доминирования
- •11.2. Принцип оптимальности и уравнения Беллмана
- •11.3. Задача распределения ресурсов
- •Расчет условных оптимумов
- •11.4. Задача замены оборудования
- •Исходные данные
- •Коэффициенты, учитывающие инфляцию
- •Зачетно-экзаменационные вопросы
- •1. Теоретические тестовые вопросы
- •2. Теоретические тестовые вопросы по MathCad
- •3. Практические тестовые вопросы
- •1. Вопросы по системам линейных уравнений и методу Жордана-Гаусса:
- •2. Вопросы по формам задач линейного программирования:
- •3. Вопросы по свойствам задач линейного программирования и геометрическому методу их решения:
- •4. Вопросы по симплекс-методу решения задач линейного программирования:
- •5. Вопросы по составлению двойственных задач линейного программирования:
Построение области допустимых решений задачи
Ответ: рассматриваемая задача линейного программирования не имеет решения в силу несовместности системы ограничений.
5.3. Симплекс-метод решения задач лп
В общем виде схема решения задач линейного программирования (ЛП) заключается в последовательном переборе всех допустимых решений и выборе «наилучшего», т.е. оптимального решения с точки зрения целевой функции. Однако, если число допустимых решений велико, то такая задача становится труднореализуемой. Суть симплекс-метода заключается в целенаправленном переборе допустимых решений, при котором целевая функция «улучшается», или, по крайней мере, «не ухудшается» на каждом последующем шаге решения (итерации).
Рассмотрим следующую ЗЛП в канонической форме:
,
,
, (5.15)
.
Любые m переменных системы ограничений ЗЛП (5.15), состоящей из m линейно независимых уравнений с n переменными (m<n), называются основными (или базисными), если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные n–m переменных называются неосновными (или свободными).
Базисным называют решение ЗЛП, при котором все свободные переменные равны нулю. Допустимым базисным решением (опорным планом) называют базисное решение, удовлетворяющее условию неотрицательности, т.е. .
Опорный план называют невырожденным, если он содержит ровно m положительных компонент, в противном случае, он является вырожденным.
Алгоритм симплекс-метода можно представить в виде следующей схемы:
Рис.
5.7.
Алгоритм симплекс-метода
Таким образом, алгоритм симплекс-метода можно представить в виде следующих этапов:
Представление исходной задачи в виде симплекс таблицы.
Для получения исходной симплекс-таблицы общую или стандартную задачу линейного программирования необходимо привести к каноническому виду путем введения дополнительных неотрицательных переменных.
Если задача линейного программирования изначально задана в канонической форме, то необходимо выделить базисные переменные в системе ограничений, используя, к примеру, метод Жордана-Гаусса.
Пусть с помощью метода Жордана-Гаусса в системе ограничений задачи (5.15) выделили базисные переменные х1, х2, …, хm:
(5.16)
где
– полученные в результате элементарных
преобразований значения величин aij
и bi
соответственно (причем
- не обязательно положительные);
xm+1, xm+2, …, xn – свободные переменные.
Выразим в системе (5.16) базисные переменные через свободные:
(5.17)
Подставим в целевую функцию задачи линейного программирования (5.15) полученные значения базисных переменных, приведем подобные, в результате получим:
(5.18)
где
- сумма величин
;
– полученные в
результате преобразований значения
коэффициентов при переменных xm+1,
xm+2,
…, xn
соответственно;
– не обязательно
положительные.
Представим полученные систему ограничений и целевую функцию в виде следующей таблицы:
Таблица 5.1
Исходная симплекс-таблица
Свободные переменные Базисные переменные |
Свободные числа,
|
|
|
|
|
Оценочные отношения,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Примечание: величины и в таблице приводятся со своими знаками, которые они имеют в системе ограничений (5.17) и целевой функции (5.18) без раскрытия скобок.
Данную таблицу называют симплекс-таблицей, на основе которой проводятся последующие преобразования.