
- •Содержание
- •7.1. Основные понятия и определения 114
- •11. Задачи динамического программирования 127
- •1. Основные понятия и определения
- •2. Классификация экономико-математических моделей
- •3. Обобщенный алгоритм построения эмм
- •4. Метод Жордана-Гаусса
- •Табличная форма представления системы линейных уравнений
- •5. Задачи линейного программирования
- •5.1. Свойства задач лп
- •5.2. Графический (геометрический) метод решения задач лп
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •4 Этап: построение вектора-градиента.
- •5 Этап: построение прямой целевой функции.
- •6 Этап: определение оптимума целевой функции.
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •3 Этап: определение одр задачи линейного программирования.
- •Построение области допустимых решений задачи
- •5.3. Симплекс-метод решения задач лп
- •Представление исходной задачи в виде симплекс таблицы.
- •Исходная симплекс-таблица
- •2. Определение базисного решения.
- •3. Проверка совместности системы ограничений.
- •4. Проверка ограниченности целевой функции.
- •5. Проверка допустимости базисного решения.
- •6. Проверка оптимальности найденного базисного решения.
- •7. Проверка альтернативности найденного оптимального решения.
- •8. Определение разрешающего элемента.
- •8.1. Определение разрешающей колонки.
- •8.2. Определение разрешающей строки.
- •8.3. Определение разрешающего элемента.
- •9. Преобразование симплекс-таблицы.
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •8.2. Определение разрешающей строки.
- •II итерация:
- •1 Этап: составление симплекс-таблицы.
- •Симплекс-таблица II итерации
- •Симплекс-таблица II итерации
- •9 Этап: преобразование симплекс-таблицы.
- •III итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица III итерации
- •Симплекс-таблица III итерации
- •9 Этап: преобразование симплекс-таблицы.
- •IV итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица IV итерации
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •I итерация
- •1 Этап: составление исходной симплекс-таблицы.
- •2 Этап: определение базисного решения.
- •3 Этап: проверка совместности системы ограничений злп.
- •5.4. Двойственные задачи лп
- •5.5. Двойственный симплекс-метод решения задач лп
- •Симплекс-таблица оптимального решения исходной задачи
- •Симплекс-таблица оптимального решения исходной задачи
- •6. Задачи целочисленного (дискретного) лп
- •6.1. Задачи лп транспортного типа
- •6.2. Метод потенциалов
- •1. Проверка сбалансированности запасов и потребностей.
- •2. Разработка исходного опорного плана.
- •3. Проверка вырожденности опорного плана.
- •4. Расчет потенциалов.
- •5. Проверка плана на оптимальность.
- •6. Поиск «вершины максимальной неоптимальности» (вмн).
- •7. Построение контура перераспределения поставок.
- •8. Определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9. Получение нового опорного плана.
- •I итерация:
- •1 Этап: проверка сбалансированности запасов и потребностей.
- •2 Этап: разработка исходного опорного плана.
- •3 Этап: проверка вырожденности опорного плана.
- •4 Этап: расчет потенциалов.
- •5 Этап: проверка плана на оптимальность.
- •6 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •7 Этап: построение контура перераспределения поставок.
- •8 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9 Этап: получения нового опорного плана.
- •II итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •III итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •VI итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •6.3. Варианты заданий
- •6.4. Метод Гомори
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •I итерация
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •II итерация
- •1 Этап: формирование правильного отсечения.
- •2 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •3 Этап: решение скорректированной задачи.
- •6.5. Метод ветвей и границ
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •I итерация
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •II итерация
- •1 Этап: формирование исключаемой области.
- •2 Этап: формирование и решение задач с дополнительными ограничениями.
- •7. Теория игр
- •7.1. Основные понятия и определения
- •7.2. Платежная матрица. Нижняя и верхняя цена игры
- •Платежная матрица
- •Платежная матрица игры «поиск»
- •Платежная матрица игры
- •7.3. Решение игр в смешанных стратегиях
- •7.4. Правило доминирования
- •11.2. Принцип оптимальности и уравнения Беллмана
- •11.3. Задача распределения ресурсов
- •Расчет условных оптимумов
- •11.4. Задача замены оборудования
- •Исходные данные
- •Коэффициенты, учитывающие инфляцию
- •Зачетно-экзаменационные вопросы
- •1. Теоретические тестовые вопросы
- •2. Теоретические тестовые вопросы по MathCad
- •3. Практические тестовые вопросы
- •1. Вопросы по системам линейных уравнений и методу Жордана-Гаусса:
- •2. Вопросы по формам задач линейного программирования:
- •3. Вопросы по свойствам задач линейного программирования и геометрическому методу их решения:
- •4. Вопросы по симплекс-методу решения задач линейного программирования:
- •5. Вопросы по составлению двойственных задач линейного программирования:
3. Проверка вырожденности опорного плана.
В соответствии с теоремой 6.2 проверяется вырожденность найденного плана. Если опорный план вырожденный, т.е.
, (6.13)
(где N – число заполненных клеток в таблице поставок) тогда вводится k фиктивных поставок:
, (6.14)
т.е. в любых k незаполненных клетках таблицы поставок вписывают нулевые значения проектным параметрам xij:
, (6.15)
где S – множество пар индексов (i, j) свободных переменных, соответствующих незаполненным клеткам.
4. Расчет потенциалов.
Расчет потенциалов выполняют по загруженным клеткам таблицы поставок, для которых:
, (6.16)
где αi, βj – потенциал i-ой строки и j-ой колонки соответственно.
Для первой строки принимают α1=0, затем остальные потенциалы рассчитывают по загруженным клеткам в соответствии с выражением (6.14).
Результаты расчетов заносят в таблицу поставок.
Таблица 6.2
Таблица поставок
Потребители Поставщики |
B1 |
B2 |
… |
Bn |
Запасы поставщиков |
αi |
A1 |
c11 x11 |
c12 x12 |
… |
c1n x1n |
a1 |
α1 |
A2 |
c21 x21 |
c22 x22 |
… |
c2n x2n |
a2 |
α2 |
|
|
|
… |
|
|
|
Am |
cm1 xm1 |
cm2 xm2 |
… |
cmn xmn |
am |
αm |
Потребности потребителей |
b1 |
b2 |
… |
bn |
|
|
βj |
β1 |
β2 |
… |
βn |
5. Проверка плана на оптимальность.
Проверка опорного плана на оптимальность осуществляется по незагруженным клеткам. Если для всех незагруженных клеток выполняется условие:
, (6.17)
то найденный опорный план является оптимальным.
Оптимальное решение будет единственным, если для всех незагруженных клеток выполняется условие:
. (6.18)
Если для какой-либо незагруженной клетки условие (6.15) не выполняется, то опорный план не является оптимальным и переходят к следующему этапу.
6. Поиск «вершины максимальной неоптимальности» (вмн).
По незагруженным клеткам, для которых условие (6.15) не выполняется, рассчитывают оценки:
, (6.19)
где
– множество пар индексов (i,
j),
соответствующих незаполненным клеткам,
для которых не выполняется условие
оптимальности (6.15). Данные оценки
характеризуют размер экономии транспортных
издержек на 1 ед. перевозимого груза.
Среди полученных оценок находят наибольшую, т.е.:
, (6.20)
которая соответствует ВМН. Клетку, соответствующую ВМН, в таблице поставок помечают «+».
7. Построение контура перераспределения поставок.
Контур перераспределения поставок составляют по следующим правилам:
7.1. Контур представляет собой многоугольник с вершинами в загруженных клетках, за исключением клетки ВМН, и звеньями, пролегающими вдоль строк и колонок таблицы поставок. В каждой строке (колонке) должны быть только по две вершины.
7.2. Вершины контура последовательно поочередно подразделяют на загружаемые «+» и разгружаемые «–», начиная с ВМН.
П
остроенный
контур в соответствии с вышеперечисленными
правилами может принимать, к примеру,
следующие формы:
а) прямоугольника:
б
)
Г-образного многоугольника, например:
в
)
пересекающегося многоугольника: