- •Содержание
- •7.1. Основные понятия и определения 114
- •11. Задачи динамического программирования 127
- •1. Основные понятия и определения
- •2. Классификация экономико-математических моделей
- •3. Обобщенный алгоритм построения эмм
- •4. Метод Жордана-Гаусса
- •Табличная форма представления системы линейных уравнений
- •5. Задачи линейного программирования
- •5.1. Свойства задач лп
- •5.2. Графический (геометрический) метод решения задач лп
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •4 Этап: построение вектора-градиента.
- •5 Этап: построение прямой целевой функции.
- •6 Этап: определение оптимума целевой функции.
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •3 Этап: определение одр задачи линейного программирования.
- •Построение области допустимых решений задачи
- •5.3. Симплекс-метод решения задач лп
- •Представление исходной задачи в виде симплекс таблицы.
- •Исходная симплекс-таблица
- •2. Определение базисного решения.
- •3. Проверка совместности системы ограничений.
- •4. Проверка ограниченности целевой функции.
- •5. Проверка допустимости базисного решения.
- •6. Проверка оптимальности найденного базисного решения.
- •7. Проверка альтернативности найденного оптимального решения.
- •8. Определение разрешающего элемента.
- •8.1. Определение разрешающей колонки.
- •8.2. Определение разрешающей строки.
- •8.3. Определение разрешающего элемента.
- •9. Преобразование симплекс-таблицы.
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •8.2. Определение разрешающей строки.
- •II итерация:
- •1 Этап: составление симплекс-таблицы.
- •Симплекс-таблица II итерации
- •Симплекс-таблица II итерации
- •9 Этап: преобразование симплекс-таблицы.
- •III итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица III итерации
- •Симплекс-таблица III итерации
- •9 Этап: преобразование симплекс-таблицы.
- •IV итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица IV итерации
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •I итерация
- •1 Этап: составление исходной симплекс-таблицы.
- •2 Этап: определение базисного решения.
- •3 Этап: проверка совместности системы ограничений злп.
- •5.4. Двойственные задачи лп
- •5.5. Двойственный симплекс-метод решения задач лп
- •Симплекс-таблица оптимального решения исходной задачи
- •Симплекс-таблица оптимального решения исходной задачи
- •6. Задачи целочисленного (дискретного) лп
- •6.1. Задачи лп транспортного типа
- •6.2. Метод потенциалов
- •1. Проверка сбалансированности запасов и потребностей.
- •2. Разработка исходного опорного плана.
- •3. Проверка вырожденности опорного плана.
- •4. Расчет потенциалов.
- •5. Проверка плана на оптимальность.
- •6. Поиск «вершины максимальной неоптимальности» (вмн).
- •7. Построение контура перераспределения поставок.
- •8. Определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9. Получение нового опорного плана.
- •I итерация:
- •1 Этап: проверка сбалансированности запасов и потребностей.
- •2 Этап: разработка исходного опорного плана.
- •3 Этап: проверка вырожденности опорного плана.
- •4 Этап: расчет потенциалов.
- •5 Этап: проверка плана на оптимальность.
- •6 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •7 Этап: построение контура перераспределения поставок.
- •8 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9 Этап: получения нового опорного плана.
- •II итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •III итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •VI итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •6.3. Варианты заданий
- •6.4. Метод Гомори
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •I итерация
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •II итерация
- •1 Этап: формирование правильного отсечения.
- •2 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •3 Этап: решение скорректированной задачи.
- •6.5. Метод ветвей и границ
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •I итерация
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •II итерация
- •1 Этап: формирование исключаемой области.
- •2 Этап: формирование и решение задач с дополнительными ограничениями.
- •7. Теория игр
- •7.1. Основные понятия и определения
- •7.2. Платежная матрица. Нижняя и верхняя цена игры
- •Платежная матрица
- •Платежная матрица игры «поиск»
- •Платежная матрица игры
- •7.3. Решение игр в смешанных стратегиях
- •7.4. Правило доминирования
- •11.2. Принцип оптимальности и уравнения Беллмана
- •11.3. Задача распределения ресурсов
- •Расчет условных оптимумов
- •11.4. Задача замены оборудования
- •Исходные данные
- •Коэффициенты, учитывающие инфляцию
- •Зачетно-экзаменационные вопросы
- •1. Теоретические тестовые вопросы
- •2. Теоретические тестовые вопросы по MathCad
- •3. Практические тестовые вопросы
- •1. Вопросы по системам линейных уравнений и методу Жордана-Гаусса:
- •2. Вопросы по формам задач линейного программирования:
- •3. Вопросы по свойствам задач линейного программирования и геометрическому методу их решения:
- •4. Вопросы по симплекс-методу решения задач линейного программирования:
- •5. Вопросы по составлению двойственных задач линейного программирования:
Симплекс-таблица оптимального решения исходной задачи
СП БП |
|
|
|
|
18 |
1 |
3 |
|
16 |
2 |
1 |
|
5 |
0 |
1 |
|
21 |
3 |
0 |
|
0 |
–2 |
–3 |
В соответствии с
теоремой 5.6, оптимальные значения
переменных
и
будут равны абсолютным значениям
коэффициентов при соответствующих
переменных целевой функции исходной
задачи, выраженной через свободные
переменные ее оптимального решения.
По таблице 5.14 выпишем целевую функцию исходной задачи, выраженную через свободные переменные ее оптимального решения:
.
Следовательно,
,
.
Переменные
,
,
и
не присутствуют в целевой функции (т.е.
коэффициенты при них равны нулю),
следовательно, оптимальные значения
соответствующих им переменных
,
,
и
равны нулю.
В соответствии с
теоремой 5.5,
.
Таким образом,
оптимальное значение целевой функции
,
которое достигается при
.
Пример 5.9. На основе задачи 5.6. найдем решение двойственной задачи.
Исходная задача |
Двойственная задача |
|
|
Данная двойственная пара является несимметричной. Приведем к каноническому виду двойственную задачу.
Исходная задача |
Двойственная задача |
|
|
Для установления соответствия переменных двойственной пары введем в исходную задачу две недостающие фиктивные переменные.
Исходная задача |
Двойственная задача |
|
|
Установим соответствие между переменными взаимно двойственных задач.
Таблица 5.15
Соответствие переменных двойственной пары
Исходная задача |
|||||
Основные переменные |
Дополнительные переменные |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Дополнительные переменные |
Основные переменные |
||||
Двойственная задача |
|||||
Решим исходную задачу симплекс-методом.
Используя метод
Жордана-Гаусса, выделим в системе
ограничений исходной задачи в качестве
базисных переменные
и
(примечание:
не использовать в качестве базисных
фиктивные переменные).
В результате преобразований получим следующую матрицу коэффициентов:
.
Система ограничений исходной задачи примет следующий вид:
Выразим базисные переменные через свободные, в результате исходная задача примет следующий вид:
Подставив полученные значения базисных переменных в целевую функцию, она примет следующий вид:
В результате решения симплекс-методом преобразованной исходной задачи на последней итерации получим следующую симплекс-таблицу:
Таблица 5.16
