- •Содержание
- •7.1. Основные понятия и определения 114
- •11. Задачи динамического программирования 127
- •1. Основные понятия и определения
- •2. Классификация экономико-математических моделей
- •3. Обобщенный алгоритм построения эмм
- •4. Метод Жордана-Гаусса
- •Табличная форма представления системы линейных уравнений
- •5. Задачи линейного программирования
- •5.1. Свойства задач лп
- •5.2. Графический (геометрический) метод решения задач лп
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •4 Этап: построение вектора-градиента.
- •5 Этап: построение прямой целевой функции.
- •6 Этап: определение оптимума целевой функции.
- •2 Этап: определение решения каждого из неравенств системы ограничений.
- •3 Этап: определение одр задачи линейного программирования.
- •Построение области допустимых решений задачи
- •5.3. Симплекс-метод решения задач лп
- •Представление исходной задачи в виде симплекс таблицы.
- •Исходная симплекс-таблица
- •2. Определение базисного решения.
- •3. Проверка совместности системы ограничений.
- •4. Проверка ограниченности целевой функции.
- •5. Проверка допустимости базисного решения.
- •6. Проверка оптимальности найденного базисного решения.
- •7. Проверка альтернативности найденного оптимального решения.
- •8. Определение разрешающего элемента.
- •8.1. Определение разрешающей колонки.
- •8.2. Определение разрешающей строки.
- •8.3. Определение разрешающего элемента.
- •9. Преобразование симплекс-таблицы.
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •8.2. Определение разрешающей строки.
- •II итерация:
- •1 Этап: составление симплекс-таблицы.
- •Симплекс-таблица II итерации
- •Симплекс-таблица II итерации
- •9 Этап: преобразование симплекс-таблицы.
- •III итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица III итерации
- •Симплекс-таблица III итерации
- •9 Этап: преобразование симплекс-таблицы.
- •IV итерация
- •1 Этап: построение новой симплекс-таблицы.
- •Симплекс-таблица IV итерации
- •I итерация:
- •1 Этап: формирование исходной симплекс-таблицы.
- •I итерация
- •1 Этап: составление исходной симплекс-таблицы.
- •2 Этап: определение базисного решения.
- •3 Этап: проверка совместности системы ограничений злп.
- •5.4. Двойственные задачи лп
- •5.5. Двойственный симплекс-метод решения задач лп
- •Симплекс-таблица оптимального решения исходной задачи
- •Симплекс-таблица оптимального решения исходной задачи
- •6. Задачи целочисленного (дискретного) лп
- •6.1. Задачи лп транспортного типа
- •6.2. Метод потенциалов
- •1. Проверка сбалансированности запасов и потребностей.
- •2. Разработка исходного опорного плана.
- •3. Проверка вырожденности опорного плана.
- •4. Расчет потенциалов.
- •5. Проверка плана на оптимальность.
- •6. Поиск «вершины максимальной неоптимальности» (вмн).
- •7. Построение контура перераспределения поставок.
- •8. Определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9. Получение нового опорного плана.
- •I итерация:
- •1 Этап: проверка сбалансированности запасов и потребностей.
- •2 Этап: разработка исходного опорного плана.
- •3 Этап: проверка вырожденности опорного плана.
- •4 Этап: расчет потенциалов.
- •5 Этап: проверка плана на оптимальность.
- •6 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •7 Этап: построение контура перераспределения поставок.
- •8 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •9 Этап: получения нового опорного плана.
- •II итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •III итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •4 Этап: поиск «вершины максимальной неоптимальности» (вмн).
- •5 Этап: построение контура перераспределения поставок.
- •6 Этап: определение минимального элемента в контуре перераспределения и перераспределение поставок по контуру.
- •7 Этап: получения нового опорного плана.
- •VI итерация:
- •1 Этап: проверка вырожденности опорного плана.
- •2 Этап: расчет потенциалов.
- •3 Этап: проверка плана на оптимальность.
- •6.3. Варианты заданий
- •6.4. Метод Гомори
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •I итерация
- •2 Этап: формирование правильного отсечения.
- •3 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •4 Этап: решение скорректированной задачи.
- •II итерация
- •1 Этап: формирование правильного отсечения.
- •2 Этап: корректировка исходной задачи с ослабленными ограничениями с учетом правильного отсечения.
- •3 Этап: решение скорректированной задачи.
- •6.5. Метод ветвей и границ
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •I итерация
- •2 Этап: формирование исключаемой области.
- •3 Этап: формирование и решение задач с дополнительными ограничениями.
- •II итерация
- •1 Этап: формирование исключаемой области.
- •2 Этап: формирование и решение задач с дополнительными ограничениями.
- •7. Теория игр
- •7.1. Основные понятия и определения
- •7.2. Платежная матрица. Нижняя и верхняя цена игры
- •Платежная матрица
- •Платежная матрица игры «поиск»
- •Платежная матрица игры
- •7.3. Решение игр в смешанных стратегиях
- •7.4. Правило доминирования
- •11.2. Принцип оптимальности и уравнения Беллмана
- •11.3. Задача распределения ресурсов
- •Расчет условных оптимумов
- •11.4. Задача замены оборудования
- •Исходные данные
- •Коэффициенты, учитывающие инфляцию
- •Зачетно-экзаменационные вопросы
- •1. Теоретические тестовые вопросы
- •2. Теоретические тестовые вопросы по MathCad
- •3. Практические тестовые вопросы
- •1. Вопросы по системам линейных уравнений и методу Жордана-Гаусса:
- •2. Вопросы по формам задач линейного программирования:
- •3. Вопросы по свойствам задач линейного программирования и геометрическому методу их решения:
- •4. Вопросы по симплекс-методу решения задач линейного программирования:
- •5. Вопросы по составлению двойственных задач линейного программирования:
8.2. Определение разрешающей строки.
Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.
Таблица 5.4
Исходная симплекс-таблица
СП БП |
|
|
|
Оценочные отношения |
|
1 |
1 |
3 |
|
|
16 |
2 |
1 |
|
|
5 |
0 |
1 |
|
|
21 |
3 |
0 |
– |
|
0 |
–2 |
–3 |
|
В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5», следовательно, она будет разрешающей.
Элемент, расположенный
на пересечение разрешающей колонки и
разрешающей строки, принимается в
качестве разрешающего. В нашем примере
– это элемент
,
который расположен на пересечении
строки «х5»
и колонки «х2».
9 этап: преобразование симплекс-таблицы.
Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2, в новой симплекс-таблице (таблице 5.5) их меняем местами.
9.1. Преобразование разрешающего элемента.
Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:
Полученный результат вписываем в аналогичную клетку таблицы 5.5.
9.2. Преобразование разрешающей строки.
Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.
9.3. Преобразование разрешающей колонки.
Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.
9.4. Преобразование остальных элементов симплекс-таблицы.
Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».
К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3» и колонки « », условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:
«х3
»:
.
Аналогично преобразуются значения других клеток:
«х3
х1»:
;
«х4
»:
;
«х4
х1»:
;
«х6
»:
;
«х6
х1»:
;
«
»:
;
«
х1»:
.
В результате данных преобразований получили новую симплекс-таблицу (таблица 5.5).

8