
- •Переменные и постоянные величины
- •Множества. Операции над множествами. Символика математической логики.
- •Действительные числа и их свойства
- •Понятие окрестности точки. Точки прикосновения, предельные , граничные и внутренние точки множества.
- •Открытые и замкнутые множества. Отрезок, интервал, промежуток действительной прямой. Ограниченные множества.
- •Понятие отображения (функции). Образы и прообразы множеств.
- •Способы задания функций. Обратная функция, сложная функция
- •Ограниченные и монотонные последовательности
- •Теорема о единственности предела
- •Теорема о необходимом условии сходимости числовой последовательности.
- •Свойства сходящихся последовательностей, связянные с арифметическими действиями и неравенствами
- •Предел функции
- •Бесконечно большие, бесконечно малые и эквивалентные величины, о- символика.
- •Основные виды неопределенностей
- •Замечательные пределы
- •Непрерывность функции в точке и на множестве. Арифметические операции над непрерывными функциями.
- •Свойства функция, непрерывных на отрезке
- •Основные теоремы о функциях, непрерывных на отрезке
- •Точки разрыва и их классификации
- •Производная и дифференциал функции. Связь с непрерывностью.
- •Г еометрический смысл дифференциала
- •Дифференцируемость функции. Необходимые и достаточные условия дифференцируемости.
- •Производная и дифференциал суммы, произведения и частного
- •Производная сложной функции и обратной функции
- •Производные высших порядков
- •Механическое истолкование второй производной
- •Дифференциалы высших порядков
- •Признаки постоянства, возрастания и убывания функций на промежутке
- •Нахождение максимумов и минимумов функции с помощью производных
- •Нахождение наименьшего и наибольшего значения функции на заданном промежутке
- •Правило раскрытия неопределенности Лопиталя-Бернулли
- •Касательная к плоской кривой. Выпуклость и вогнутость плоской кривой
- •Точки перегиба графика функции. И нахождение.
- •Асимптоты
- •Построение графика функции на основе её полного анализа.
- •Первообразная функция. Неопределенный интеграл и его основные свойства
- •Основные методы интегрирования
Основные виды неопределенностей
Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:
|
|
|
|
|
|
|
(Здесь
—
бесконечно малая величина, а
—
бесконечно большая величина)
по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.
Замечательные пределы
Замечательные пределы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:
Первый замечательный предел:
Второй замечательный предел:
Непрерывность функции в точке и на множестве. Арифметические операции над непрерывными функциями.
Функция
называется непрерывной
в точке
,
если:
функция определена в точке и ее окрестности;
существует конечный предел функции в точке ;
это предел равен значению функции в точке , т.е.
Функция y = f(x ), непрерывная во всех точках множества Х, называется непрерывной на этом множестве.
Теорема.
Если две функции
и
определены в одном и том же промежутке
и обе непрерывны в точке
то
в той же точке будут непрерывны и функции
(последняя
— при условии, что
Свойства функция, непрерывных на отрезке
Функция, непрерывная на отрезке (или любом другом компактном множестве), равномерно непрерывна на нём.
Функция, непрерывная на отрезке (или любом другом компактном множестве), ограничена и достигает на нём свои максимальное и минимальное значения.
Областью значений функции , непрерывной на отрезке
, является отрезок
где минимум и максимум берутся по отрезку .
Если функция непрерывна на отрезке и
то существует точка
в которой
.
Если функция непрерывна на отрезке и число
удовлетворяет неравенству
или неравенству
то существует точка в которой
.
Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строгомонотонна.
Монотонная функция на отрезке непрерывна в том и только в том случае, когда область ее значений является отрезком с концами
и
.
Если функции и
непрерывны на отрезке , причем
и
то существует точка в которой
Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку.
Основные теоремы о функциях, непрерывных на отрезке
Теорема 1 (об ограниченности непрерывной функции). Если функция f(x) непрерывна на отрезке [a, b], то она ограничена на этом отрезке, т.е. существует такое число C> 0, что "x О [a, b] выполняется неравенство |f(x)| ≤ C.
Теорема 2 (Вейерштрасс). Если функция f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m, т.е. существуют точки α, β О [a, b] такие, что m = f(α) ≤ f(x) ≤ f(β) = M для всех x О [a, b]
Теорема 3 (о существовании нуля). Если функция f(x) непрерывна на отрезке [a, b] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a, b) найдется по крайней мере одна точка ξ в которой f(ξ) = 0.
Теорема 4 (Больцано–Коши). Если функция f(x) непрерывна на отрезке [a, b], то она принимает на (a,b) все промежуточные значения между f(a) и f(b).