- •Content
- •4.1 Introduction 40
- •5.4 Conclusion 71
- •Abbreviations
- •Introduction
- •1. Experimental research methods
- •1.1. Planning an experiment in research
- •1.2. Measurement error
- •1.3 Processing and analysis of experimental data
- •1.4 Errors of indirect measurements
- •1.5 Methods of the theory of correlation
- •1.6 Dimensionless criteria of the atomization process
- •2. Experimental instrumentation
- •2.1 The common-rail fuel injection equipment
- •2.2 Review of drop sizing techniques and spray characteristics
- •2.3 Direct imaging method
- •2.4 Formation of liquid spray
- •2.5 Conclusion
- •3. Analysis of mixture formation and flame development of diesel combustion
- •3.1 Experiment set up
- •3.1.1 Rapid Compression Machine
- •3.1.2 Optical Setup
- •3.1.3 Direct Photography
- •3.1.4 Schlieren Photography
- •3.2 Summary
- •4. Analisis of spray development and autoignition process
- •4.1 Introduction
- •4.2 Theoretical Analyses
- •4.3 Experimental set-up
- •4.3.1 Constant Volume Combustion Chamber (cvcc)
- •4.3.2 Camera system
- •4.3.3 Nozzles and theirs dimension
- •4.3.4 Fuels
- •4.4 Experimentl technique
- •5. Experimental results
- •5.1 Spray tip measurments
- •5.2 Cone angle measurments
- •5.3 Autoignition Measurements
- •5.4 Conclusion
- •6. Безпека I охорона в морi
- •6.1 Підготовка членів екіпажу з охорони судна: планування, організація занять і навчань
- •6.2 Застосування плану охорони судна
- •6.3 Основи захисту моряків в умовах хімічного забруднення судна
- •8. Охорона працi
- •8.1 Стомлення і перевтома
- •8.2 Професійний стрес
- •8.3 Теорія горіння, пожежний трикутник
- •8.4 Знезараження та очищення стічних вод
- •9. Техніко-економічне обгрунтування введення досконаліших систем контролю робочих процесів суднових дизелів
Content
ABBREVIATIONS 3
INTRODUCTION 5
1. EXPERIMENTAL RESEARCH METHODS 6
1.1. Planning an experiment in research 6
1.2. Measurement error 10
1.3 Processing and analysis of experimental data 16
1.4 Errors of indirect measurements 17
1.5 Methods of the theory of correlation 19
1.6 Dimensionless criteria of the atomization process 21
2. EXPERIMENTAL INSTRUMENTATION 22
2.1 The common-rail fuel injection equipment 22
2.2 Review of drop sizing techniques and spray characteristics 25
2.3 Direct imaging method 26
2.4 Formation of liquid spray 26
2.5 Conclusion 27
3. ANALYSIS OF MIXTURE FORMATION AND FLAME DEVELOPMENT OF DIESEL COMBUSTION 29
3.1 Experiment set up 31
3.2 Summary 39
4. ANALISIS OF SPRAY DEVELOPMENT AND AUTOIGNITION PROCESS 40
4.1 Introduction 40
4.2 Theoretical Analyses 43
4.3 Experimental set-up 45
4.4 Experimentl technique 52
5. EXPERIMENTAL RESULTS 56
5.4 Conclusion 71
6. БЕЗПЕКА I ОХОРОНА В МОРI 73
6.1 Підготовка членів екіпажу з охорони судна: планування, організація занять і навчань 73
6.2 Застосування плану охорони судна 76
6.3 Основи захисту моряків в умовах хімічного забруднення судна 77
8. ОХОРОНА ПРАЦI 81
8.1 Стомлення і перевтома 81
8.2 Професійний стрес 83
8.3 Теорія горіння, пожежний трикутник 85
8.4 Знезараження та очищення стічних вод 88
9. Техніко-економічне обгрунтування введення досконаліших систем контролю робочих процесів суднових дизелів 93
Abbreviations
BDC: Bottom-Dead Centre
CBM: Condition Based Maintenance
CM: Condition Monitoring
DAQ: Data Acquisition
DI: Direct Injection
ECM: Engine Condition Monitoring
HSDI: High Speed Direct Injection
IJE: Fuel Injection End
IJS: Fuel Injection Start
IVC: Inlet Valve Closing
IVO: Inlet Valve Opening
OHV: Overhead Valve
PCI: Piston-Cylinder Interface
PR: Pushrod
TDC: Top-Dead Centre
XVO: Exhaust Valve Opening
XVC: Exhaust Valve Closing
Cd: Discharge coefficient
mf : Actual fuel flow
mth: Theoretical fuel flow
A0: Area of nozzle outlet
ρf: Fuel density
Pinj: Injection pressure
Pback: Pressure of the injection environment
ueff: Effective spray velocity
Aeff: Effective area of nozzle outlet
umean: Mean spray velocity
ρa: Density of the injection environment
S: Spray tip penetration
P: Differential pressure of inlet and exit of nozzle
d0: Nozzle outlet diameter
l: Nozzle hole length
dsack: Sack chamber diameter of nozzle hole
τ: Ignition delay time.
Introduction
Mixture formation plays as a key element on burning process that strongly affects the exhaust emissions such as nitrogen oxide (NOx) and Particulate Matter (PM). The reductions of emissions can be achieved with improvement throughout the mixing of fuel and air behavior.
In diesel engines, combustion progresses by nature heterogeneous. Diesel spray spontaneous ignites within short period after fuel injection. The diesel engine has undergone continues improvements through the development of engines technologies especially in controlling the combustion process in order to reduce the NOx and PM levels and also to tackle the fuel economy vehicle. The most important issue in diesel combustion is achieving sufficient rapid mixing between the injected fuel and the air in cylinder prior to ignition. In this research, the new combustion concept based on the characteristics of diesel ignition and combustion is investigated focusing on fuel-air mixing with changing ambient condition.
The oxidation reactions at the end of endothermic period depend on the physical process such as air entrainment, the breakup of the jet spray, and droplets evaporation. Along with these parameters, a better comprehension of combustible mixtured, auto-ignition and combustion process is also needed for the optimization of diesel engines.
