
- •Оглавление
- •Лабораторная работа № 1. Техника безопасности при работе с медицинской аппаратурой
- •Краткая теория
- •Действие электрического тока на организм.
- •Защита от поражения электрическим током при эксплуатации электромедицинской аппаратуры
- •Безусловная безопасность
- •Условная безопасность
- •I. Проверка качества оборудования
- •II. Проверка работоспособности оборудования
- •Техника безопасности при работе с электрическими цепями
- •Техника безопасности при эксплуатации медицинского оборудования
- •Техника безопасности при работе с аппаратами ультразвуковой, ультравысокой и сверхвысокой частоты
- •Техника безопасности при эксплуатации лазеров
- •Ход работы
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •1.Что такое напряжение прикосновения?
- •Лабораторная работа № 2 исследование сил поверхностного натяжения
- •Краткая теория
- •Натяжения по методу Ребиндера.
- •Описание установки и метода Ребиндера.
- •Определение постоянной прибора а
- •Определение коэффициента поверхностного натяжения по методу отрыва капель
- •Определение зависимости поверхностного натяжения растворов пав от концентрации
- •Приложение 2
- •Запись результатов наблюдений при определении коэффициента поверхностного натяжения
- •Литература
- •Контрольные вопросы.
- •Тестовые задания.
- •1. Коэффициентом поверхностного натяжения называется:
- •2. Какие вещества называются поверхностно-активными?
- •3. Явление капиллярности – это:
- •4. Явление газовой эмболии – это:
- •5. Почему пузырек воздуха подходя к месту разветвления сосуда закупоривает сосуд?
- •Лабораторная работа № 3 исследование вязкости биологических жидкостей
- •Краткая теория.
- •Исследование зависимости коэффициента вязкости жидкости от концентрации при помощи капиллярного вискозиметра.
- •Капиллярный вискозиметр и работа с ним.
- •7. Относительная погрешность при определении коэффициента внутреннего трения может быть вычислена по формуле:
- •Определение коэффициента внутреннего трения жидкости по методу падающего шарика (метод Стокса).
- •Краткая теория
- •Выполнение работы
- •Приложение 1 Табличные данные плотности
- •Литература
- •Глава 7.
- •Тестовые задания
- •Лабораторная работа № 4 устройство и принцип работы спектрографа
- •Краткая теория
- •II.Молекулярные спектры
- •Устройство спектрографа
- •Ход работы:
- •Градуировка спектрографа.
- •II.Определение длин волн в неизвестном спектре испускания.
- •Определение длин волн известных линий спектра
- •III. Наблюдение спектров поглощения
- •Определение погрешностей
- •Приложение 1
- •Литература:
- •Глава 24. Контрольные вопросы
- •Тестовые задания.
- •14. Спектр излучения по сравнению со спектром поглощения:
- •15. Полная энергия молекулы это:
- •16. Спектром излучения вещества называется:
- •17. При переходе атома из одного состояния в другое поглощается фотон, энергия которого определяется разностью энергий атомных состояний
- •18. Поглощение атомами энергии фотона характеризуется:
- •Лабораторная работа № 5 применение спектрофотометрических методов для исследования биологических жидкостей
- •5. Построение градировочных графиков
- •8. Что называется спектром излучения вещества?
- •Лабораторная работа № 6 терапевтическая техника, основанная на применении постоянного тока
- •Краткая теория
- •Выпрямительные устройства.
- •Выполнение работы
- •Основные этапы работы
- •Определение порога ощутимого тока на аппарате «Поток»
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •1. Что такое порог ощутимого тока?
- •2. Каков порог ощутимого тока для женщин?
- •3. Обеспечение защиты персонала и пациента от электроудара осуществля- ет в приборах 2 класса
- •4. Осциллограф - это
- •Лабораторная работа № 7 терапевтическая техника, основанная на применении вч, свч и увч токов
- •Краткая теория.
- •Устройство аппарата увч-4 и работа с ним.
- •Выполнение работы.
- •1.Изучение распределения ультравысокочастотного электрического поля аппарата увч.
- •Результаты измерения распределения ультравысокочастотного электрического пол между электродами аппарата увч.
- •2. Изучение нагревания электролитов и диэлектриков в электрическом поле высокой частоты с помощью аппарата увч.
- •Результаты наблюдений нагревания электролита и диэлектрика в электрическом поле увч.
- •Литература
- •Глава 18.
- •Контрольные вопросы
- •Тестовые задания
- •19. В каких тканях происходит наибольшее поглощение энергии электромагнитных волн?
- •Лабораторная работа № 8 медицинские низкочастотные приборы и аппараты
- •Краткая теория
- •Аппарат «электросон-2»
- •Электростимулятор лабораторный эсл-1
- •Ход работы
- •Аппарат «сним-1»
- •Ход работы
- •Аппарат для терапии синусоидальными модулированными токами «амплипульс-3»
- •Ход работы
- •Электростимулятор «эксн-2»
- •Аппарат франклинизации « аф-3»
- •Аппарат « полюс-1»
- •Ход работы.
- •Литература
- •Контрольные вопросы
- •Тестовые задания.
- •Лабораторная работа № 9 специальные приемы микроскопии
- •Краткая теория
- •Ход лучей в микроскопе
- •1.Определение полного увеличения микроскопа.
- •3. Измерение величины микрообъекта.
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •Лабораторная работа № 10 математическое моделирование сердечно-сосудистой системы
- •Краткая теория.
- •Ход работы
- •Литература
- •Глава 9.
- •Контрольные вопросы.
- •Тестовые задания
- •1. Что такое модель?
- •2. Математическая модель –это:
- •3. Работа, совершаемая сердцем, затрачивается на:
- •Лабораторная работа №11 устройство и принцип работы электрокардиографа. Регистрация экг и принципы анализа
- •Краткая теория
- •1. Введение
- •2. Электрические явления в клетках и органах
- •3. Понятие эквивалентного электрического
- •4. Мультипольный эквивалентный генератор
- •5. Дипольный эквивалентный генератор
- •5.1 Потенциал точки поля диполя.
- •5.2 Разность потенциалов двух точек поля диполя.
- •5.З. Токовый диполь
- •6. Основные положения теории Эйнтховена.
- •6.1. Сердце как электрический диполь.
- •6.2 Электрический вектор сердца.
- •6.3. Соотношения между проекциями момента диполя и напряжением
- •Треугольник Эйнштейна
- •5. 5. Отведения.
- •7. Основные компоненты электрокардиограммы.
- •8. Регистрация кардиограмм
- •9. 1.Работа с электрокардиографом
- •Ход работы:
- •Подготовка электрокардиографа к работе:
- •Глава 19.
- •11. При потенциале 2 mВ перо кардиографа отклонилось на 20 мм. Чему равна чувствительность прибора?
- •12. Чтобы определить потенциал зубцов электрокардиограммы необходимо:
- •13. Чтобы определить длительность сердечного цикла по кардиограмме нужно:
- •14. Укажите формулу потенциала в некоторой точке а, находящейся в поле диполя.
- •20. Укажите формулу дипольного момента электрического диполя?
- •Лабораторная работа № 12 построение средней электрической оси сердца в треугольнике эйнтховена
- •Краткая теория
- •Ход работы
- •3 .Построить среднюю электрическую ось сердца.
- •Литература
- •Контрольные вопросы.
- •Тестовые задания
- •Согласно теории Эйнтховена сердце это:
- •Электрический вектор сердца это:
- •8. Электрокардиограмма- это:
- •9. Направление электрической оси определяется величиной угла, образованной:
- •Электрическая ось – это:
- •Лабораторная работа № 13 поляризация света биосистемами
- •Краткая теория
- •Активный раствор
- •Простейшая схема поляриметра.
- •Прохождение поляризованного света через систему поляризатор-анализатор
- •Ход работы
- •Литература
- •Контрольные вопросы.
- •Тестовые задания
- •1. Какая волна называется плоскополяризованной?
- •2. Волна, в которой колебания светового вектора происходят в различных направлениях, но в некоторых направлениях амплитуда их больше, чем в других называется:
- •3. Что такое плоскость поляризации?
- •4. Если направление колебаний светового вектора беспорядочно меняется, а амплитуды его во всех направлениях одинаковы, то такая волна называется:
- •5.Устройство,позволяющее получать поляризованный свет из естественного, называется
- •6.Сформулировать закон Брюстера.
- •7. Что такое явление анизотропии?
- •8. В чем сущность явления двойного лучепреломления?
- •9. Что такое призма Николя?
6.3. Соотношения между проекциями момента диполя и напряжением
Любой вектор полностью характеризуются его проекциями на две координатные оси, лежащие в той же плоскости, что и сам вектор. Наиболее привычной для нас является декартова система координат с двумя взаимно перпендикулярными осями, хотя использование любых других
( непараллельных) осей тоже возможно. Как будет показано в разделах 6.4 и 6.5 наиболее удобными в данном случае оказываются оси, расположенные по сторонам равностороннего треугольника.
Если точечный диполь, создающий электрическое поле, находится в центре равностороннего треугольника АВС, то из формулы (7) следует, что напряжения на концах сторон этого треугольника относятся как проекции вектора Р на его стороны (рис. 8) , так как зависимости от расстояния ( r ) и от угла (ß) в формуле (7) будут одинаковыми и при вычислении отношения сократятся:
UАВ:U ВС :UАС=РАВ:РВС:РАС (8)
Из соотношения (8), измерив напряжения UАВ, UВС, UАС, можно определить относительную величину проекций вектора Р на стороны треугольника: РАВ, РВС, РАС, а по известным проекциям, в свою очередь, можно рассчитать величину самого вектора Р (рис. 9).
Таким образом, соотношение между электрическим вектором
сердца и потенциалами точек на поверхности тела человека наиболее просто устанавливается в том случае, если эти потенциалы измерены в точках, расположенных в вершинах равностороннего треугольника по отношению к ЭВС .
,
РАВ=РСosα
Треугольник Эйнштейна
Эйнштейн предложил при электрокардиографии для того чтобы судить об изменениях ЭВС измерять разность потенциалов между каждыми двумя их трех точек, представляющих равносторонний треугольник, построенный симметрично по отношению к сердцу человека. Центр треугольника должен совпадать с точкой приложения ЭВС ( рис.10). Точки А,В,С , однако не совсем удобны для наложения электродов, Поэтому на практике измерительные электрода накладывают не в точках А,В,С, а в эквипотенциальных им точках A` ,B`,C`на конечностях. Точке А` соответствует поверхность правой руки (электрод R),точке В` - поверхность левой руки (электрод L), точке С` - поверхность левой ноги (электрод Р) (рис. 10,11).
Эквипотенциальные линии (линии одинакового потенциала) поля сердца показаны на рис.11 пунктирными линиями. Цифры на линиях показывают относительные величины этих потенциалов. Линия МN - направление электрической оси диполя вдоль анатомической оси сердца .
5. 5. Отведения.
Каждая пара электродов, с помощью которых регистрируется разность потенциалов между соответствующими точками, называется отведением. Существуют различные системы отведений. Они отличаются местом положения точек, между которыми снимается разность потенциалов: грудные отведения, отведения от конечностей и т.д. Наиболее широко в клинической практике применяются отведения от конечностей.
Отведения, образуемые каждой парой из предложенных Эйнтховеном электродов, называются стандартными и обозначаются как I, II, III.
I отведение: правая рука - левая рука (RL),
II отведение: правая рука - левая нога (RF),
III отведение: левая рука - левая нога (LF) (рис. 12 а).
Для их получения электроды накладывают на верхние и нижние конечности. К правой ноге подключают электрод заземления.
Если бы теория Эйнтховена абсолютно точно отражала электрическую деятельность сердца, то для полного описания ЭВС достаточно было бы зарегистрировать любые две из трех его проекций на стороны треутольника Эйнтховена (см. раздел 6.3). В действительности же точки регистрации не являются вершинами точно равностороннего треyrольника, начало ЭВС не лежит точно в его центре, сопротивление контакта электродов с поверхностью тела не является абсолютно одинаковым и т. д.
Поэтому на практике для более точного исследования сердечной деятельности регистрируют все три отведения, а также кроме стандартных (биополярных) отведений используют еще и монополярные (однополюсные) отведения от конечностей, одна из равновидностей которых называется усиленными.
Усиленные однополюсные отведения состоят из стандартного электрода и точки усредненного потенциала. Эта точка образуется соединением между собой через одинаковые резисторы двух дрyгих стандартных электродов. Усиленные отведения обозначаются αVR, αVL, αVF (рис. 12 б,в,г).
Учитывая что некоторые особенности поведения ЭВС не всегда однозначно проявляют себя в его фронтальной проекции (например, при инфаркте миокарда), применяют и грудные однополюсные отведения, включающие в себя грудной электрод (С), накладываемый в определенные точки поверхности грудной клетки (обычно используют 6 точек). Точка усредненного потенциала образуется в этом случае соединением между собой через одинаковые резисторы трех стандартных электродов (рис. 12 д). Грудные отведения обозначаются V1, V2, V3, V4, V5, V6 (индекс обозначает точку на грудной клетке). Известны и другие отведения, однако они применяются значительно реже.
Рис. 12 Схемы электрокардиографических отведений.
А- стандартные, б, в, г- усиленные, д - грудные