- •Оглавление
- •Лабораторная работа № 1. Техника безопасности при работе с медицинской аппаратурой
- •Краткая теория
- •Действие электрического тока на организм.
- •Защита от поражения электрическим током при эксплуатации электромедицинской аппаратуры
- •Безусловная безопасность
- •Условная безопасность
- •I. Проверка качества оборудования
- •II. Проверка работоспособности оборудования
- •Техника безопасности при работе с электрическими цепями
- •Техника безопасности при эксплуатации медицинского оборудования
- •Техника безопасности при работе с аппаратами ультразвуковой, ультравысокой и сверхвысокой частоты
- •Техника безопасности при эксплуатации лазеров
- •Ход работы
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •1.Что такое напряжение прикосновения?
- •Лабораторная работа № 2 исследование сил поверхностного натяжения
- •Краткая теория
- •Натяжения по методу Ребиндера.
- •Описание установки и метода Ребиндера.
- •Определение постоянной прибора а
- •Определение коэффициента поверхностного натяжения по методу отрыва капель
- •Определение зависимости поверхностного натяжения растворов пав от концентрации
- •Приложение 2
- •Запись результатов наблюдений при определении коэффициента поверхностного натяжения
- •Литература
- •Контрольные вопросы.
- •Тестовые задания.
- •1. Коэффициентом поверхностного натяжения называется:
- •2. Какие вещества называются поверхностно-активными?
- •3. Явление капиллярности – это:
- •4. Явление газовой эмболии – это:
- •5. Почему пузырек воздуха подходя к месту разветвления сосуда закупоривает сосуд?
- •Лабораторная работа № 3 исследование вязкости биологических жидкостей
- •Краткая теория.
- •Исследование зависимости коэффициента вязкости жидкости от концентрации при помощи капиллярного вискозиметра.
- •Капиллярный вискозиметр и работа с ним.
- •7. Относительная погрешность при определении коэффициента внутреннего трения может быть вычислена по формуле:
- •Определение коэффициента внутреннего трения жидкости по методу падающего шарика (метод Стокса).
- •Краткая теория
- •Выполнение работы
- •Приложение 1 Табличные данные плотности
- •Литература
- •Глава 7.
- •Тестовые задания
- •Лабораторная работа № 4 устройство и принцип работы спектрографа
- •Краткая теория
- •II.Молекулярные спектры
- •Устройство спектрографа
- •Ход работы:
- •Градуировка спектрографа.
- •II.Определение длин волн в неизвестном спектре испускания.
- •Определение длин волн известных линий спектра
- •III. Наблюдение спектров поглощения
- •Определение погрешностей
- •Приложение 1
- •Литература:
- •Глава 24. Контрольные вопросы
- •Тестовые задания.
- •14. Спектр излучения по сравнению со спектром поглощения:
- •15. Полная энергия молекулы это:
- •16. Спектром излучения вещества называется:
- •17. При переходе атома из одного состояния в другое поглощается фотон, энергия которого определяется разностью энергий атомных состояний
- •18. Поглощение атомами энергии фотона характеризуется:
- •Лабораторная работа № 5 применение спектрофотометрических методов для исследования биологических жидкостей
- •5. Построение градировочных графиков
- •8. Что называется спектром излучения вещества?
- •Лабораторная работа № 6 терапевтическая техника, основанная на применении постоянного тока
- •Краткая теория
- •Выпрямительные устройства.
- •Выполнение работы
- •Основные этапы работы
- •Определение порога ощутимого тока на аппарате «Поток»
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •1. Что такое порог ощутимого тока?
- •2. Каков порог ощутимого тока для женщин?
- •3. Обеспечение защиты персонала и пациента от электроудара осуществля- ет в приборах 2 класса
- •4. Осциллограф - это
- •Лабораторная работа № 7 терапевтическая техника, основанная на применении вч, свч и увч токов
- •Краткая теория.
- •Устройство аппарата увч-4 и работа с ним.
- •Выполнение работы.
- •1.Изучение распределения ультравысокочастотного электрического поля аппарата увч.
- •Результаты измерения распределения ультравысокочастотного электрического пол между электродами аппарата увч.
- •2. Изучение нагревания электролитов и диэлектриков в электрическом поле высокой частоты с помощью аппарата увч.
- •Результаты наблюдений нагревания электролита и диэлектрика в электрическом поле увч.
- •Литература
- •Глава 18.
- •Контрольные вопросы
- •Тестовые задания
- •19. В каких тканях происходит наибольшее поглощение энергии электромагнитных волн?
- •Лабораторная работа № 8 медицинские низкочастотные приборы и аппараты
- •Краткая теория
- •Аппарат «электросон-2»
- •Электростимулятор лабораторный эсл-1
- •Ход работы
- •Аппарат «сним-1»
- •Ход работы
- •Аппарат для терапии синусоидальными модулированными токами «амплипульс-3»
- •Ход работы
- •Электростимулятор «эксн-2»
- •Аппарат франклинизации « аф-3»
- •Аппарат « полюс-1»
- •Ход работы.
- •Литература
- •Контрольные вопросы
- •Тестовые задания.
- •Лабораторная работа № 9 специальные приемы микроскопии
- •Краткая теория
- •Ход лучей в микроскопе
- •1.Определение полного увеличения микроскопа.
- •3. Измерение величины микрообъекта.
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •Лабораторная работа № 10 математическое моделирование сердечно-сосудистой системы
- •Краткая теория.
- •Ход работы
- •Литература
- •Глава 9.
- •Контрольные вопросы.
- •Тестовые задания
- •1. Что такое модель?
- •2. Математическая модель –это:
- •3. Работа, совершаемая сердцем, затрачивается на:
- •Лабораторная работа №11 устройство и принцип работы электрокардиографа. Регистрация экг и принципы анализа
- •Краткая теория
- •1. Введение
- •2. Электрические явления в клетках и органах
- •3. Понятие эквивалентного электрического
- •4. Мультипольный эквивалентный генератор
- •5. Дипольный эквивалентный генератор
- •5.1 Потенциал точки поля диполя.
- •5.2 Разность потенциалов двух точек поля диполя.
- •5.З. Токовый диполь
- •6. Основные положения теории Эйнтховена.
- •6.1. Сердце как электрический диполь.
- •6.2 Электрический вектор сердца.
- •6.3. Соотношения между проекциями момента диполя и напряжением
- •Треугольник Эйнштейна
- •5. 5. Отведения.
- •7. Основные компоненты электрокардиограммы.
- •8. Регистрация кардиограмм
- •9. 1.Работа с электрокардиографом
- •Ход работы:
- •Подготовка электрокардиографа к работе:
- •Глава 19.
- •11. При потенциале 2 mВ перо кардиографа отклонилось на 20 мм. Чему равна чувствительность прибора?
- •12. Чтобы определить потенциал зубцов электрокардиограммы необходимо:
- •13. Чтобы определить длительность сердечного цикла по кардиограмме нужно:
- •14. Укажите формулу потенциала в некоторой точке а, находящейся в поле диполя.
- •20. Укажите формулу дипольного момента электрического диполя?
- •Лабораторная работа № 12 построение средней электрической оси сердца в треугольнике эйнтховена
- •Краткая теория
- •Ход работы
- •3 .Построить среднюю электрическую ось сердца.
- •Литература
- •Контрольные вопросы.
- •Тестовые задания
- •Согласно теории Эйнтховена сердце это:
- •Электрический вектор сердца это:
- •8. Электрокардиограмма- это:
- •9. Направление электрической оси определяется величиной угла, образованной:
- •Электрическая ось – это:
- •Лабораторная работа № 13 поляризация света биосистемами
- •Краткая теория
- •Активный раствор
- •Простейшая схема поляриметра.
- •Прохождение поляризованного света через систему поляризатор-анализатор
- •Ход работы
- •Литература
- •Контрольные вопросы.
- •Тестовые задания
- •1. Какая волна называется плоскополяризованной?
- •2. Волна, в которой колебания светового вектора происходят в различных направлениях, но в некоторых направлениях амплитуда их больше, чем в других называется:
- •3. Что такое плоскость поляризации?
- •4. Если направление колебаний светового вектора беспорядочно меняется, а амплитуды его во всех направлениях одинаковы, то такая волна называется:
- •5.Устройство,позволяющее получать поляризованный свет из естественного, называется
- •6.Сформулировать закон Брюстера.
- •7. Что такое явление анизотропии?
- •8. В чем сущность явления двойного лучепреломления?
- •9. Что такое призма Николя?
Лабораторная работа № 7 терапевтическая техника, основанная на применении вч, свч и увч токов
Цель занятия: Изучить принцип работы высокочастотной физиотерапевтической аппаратуры, виды приборов, применение в медико-биологической практике.
Краткая теория.
Аппараты УВЧ, применяемые для лечения электрическим полем ультравысокой частоты, представляют собой генераторы электрических колебаний (ν =40,68* 106 Гц.), индуктивно связанные с терапевтическим колебательным контуром. Электрические колебания последнего используются для воздействия на пациента, находящегося в сфере действия ультравысокочастотного электрического поля между электродами терапевтического контура.
Электрическая схема аппарата УВЧ - 4.
Рассмотрим принципиальную схему аппарата УВЧ. В этой схеме можно различать следующие основные части: а) блок питания, ламповый генератор незатухающих электрических колебаний, в) терапевтический контур.
Рис.1 Схема аппарата УВЧ
По типу питания генератор УВЧ-4 является генератором с последовательным питанием, а по типу обратной связи – генератором с емкостной связью (через междуэлектродную емкость «анод- сетка» генераторных ламп). Особенностью генератора УВЧ является то, что в состав колебательного контура входят междуэлектродные емкости ламп (емкости между анодом и катодом ) наряду с подстроечным конденсатором С малой емкости, служащим для точной настройки контура на заданную частоту.
Блок питания.
В состав блока питания входят Тр с первичной обмоткой и двумя вторичными. Первичная обмотка состоит из компенсатора напряжения сети КС и двух обмоток, которые могут быть соединены либо последовательно (при U =220 В), либо параллельно (при U =127 В). Вторичные обмотки служат для питания накальных и анодных цепей двух генераторных ламп Л1 и Л2. Переменное напряжение подается на аноды генераторных ламп через дроссель Др, а на катоды через измерительный прибор mA и далее через землю.
Генератор незатухающих колебаний УВЧ.
Генератор ультравысокочастотных колебаний можно рассматривать как сочетание двух простых однотактных генераторов, имеющих общий анодный колебательный контур, общее питание накала и анода и сопротивление R . Сопротивление R позволяет автоматически создавать на сетках обеих ламп Л1 и Л2 отрицательный потенциал относительно катода (напряжение смещения), при котором обе лампы при отсутствии колебаний в контуре заперты. Такое отрицательное смещение создается за счет падения потенциала на сопротивлении при течении по нему сеточного тока, обусловленного движением части электронов через это сопротивление от сетки к катоду, что эквивалентно течению положительных зарядов в противоположном направлении. Для симметричного изменения потенциалов на катушках индуктивности L контура и емкости С средние точки этих элементов схемы заземлены.
При подаче анодного напряжения в анодном контуре LC возникают электрические колебания, обусловливающие появление на пластинах конденсатора С и концах катушки L периодических изменений потенциала, одинаковых по величине и одинаковых по знаку. Если на верхней пластине конденсатора С положительный потенциал, то на его нижней пластине потенциал отрицательный. Через емкостную связь между анодом и сеткой колебания потенциала передаются на сетки ламп Л1 и Л2 .
Это значит, что верхняя лампа Л1 будет открыта, тогда как нижняя Л2 будет заперта. В другую половину периода колебаний, потенциалы на сетках генераторных ламп изменяется на противоположные: лампа Л2 будет открыта, а лампа Л1 - заперта. Лампы работают поочередно, со сдвигом фаз на 180º.
Таким образом, если в первую половину периода работает лампа Л1 и в верхней половине катушки контура L течет анодный ток вверх, то в другую половину периода работает лампа Л2 , и в нижней половине катушки контура L течет анодный ток вниз. Так как потенциал на сетке каждой лампы изменяется по закону синуса, то анодный ток в каждую половину периода имеет характер синусоидальных пульсаций. Эти пульсации анодного тока складываются в катушке L контура с током колебательного разряда конденсатора, циркулирующим в колебательном контуре LC . Таким образом, в контуре LC поддерживаются незатухающие электрические колебания ультравысокой частоты.
Так как колебания напряжения, возникающие в контуре, подаются на управляющие сетки ламп, то, вследствие усиливающего действия ламп, эти колебания напряжения подаются вновь на колебательный контур уже усиленными. Усиленные колебания напряжения из катушки контура через емкостную связь вновь поступают на сетки ламп, вновь усиливаются и т.д. Амплитуда колебаний возрастает до некоторого предела, ограничиваемого величиной тока насыщения генераторных ламп.
Терапевтический контур.
Для наилучшего использования ультравысокочастотных колебаний, создаваемых генератором, терапевтический контур аппарата настраивается в резонанс с колебательным контуром генератора. Терапевтический контур состоит из одного витка LТ, представляющего собой индуктивность терапевтического колебательного контура, и конденсатора СТ с емкостью порядка 40 пФ. При изменении расстояния между электродами и их взаимного расположения, а также при различной их ориентации относительно пациента емкость терапевтического контура может изменяться. Поэтому емкость СТ сделана переменной для настройки терапевтического контура в резонанс с колебательным контуром генератора . Достижение резонанса узнается по показанию миллиамперметра или по максимальному свечению индикаторной неоновой лампочки, помещенной между электродами пациента ЭП.
К выходу аппарата подключаются гибкие провода с дисковыми электродами ЭП различного диаметра, запрессованными в резину. Электроды располагаются около нужных участков тела пациента так, создаваемое между ними ультравысокочастотное электрическое поле пронизывало ткани, подлежащие воздействию УВЧ.
При резонансе колебаний контура генератора LC и терапевтического контура LТ СТ в последнем получаются колебания наибольшей мощности, и ультравысокочастотное электрическое поле вызывает в тканях наибольший эффект.
