
- •Оглавление
- •Лабораторная работа № 1. Техника безопасности при работе с медицинской аппаратурой
- •Краткая теория
- •Действие электрического тока на организм.
- •Защита от поражения электрическим током при эксплуатации электромедицинской аппаратуры
- •Безусловная безопасность
- •Условная безопасность
- •I. Проверка качества оборудования
- •II. Проверка работоспособности оборудования
- •Техника безопасности при работе с электрическими цепями
- •Техника безопасности при эксплуатации медицинского оборудования
- •Техника безопасности при работе с аппаратами ультразвуковой, ультравысокой и сверхвысокой частоты
- •Техника безопасности при эксплуатации лазеров
- •Ход работы
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •1.Что такое напряжение прикосновения?
- •Лабораторная работа № 2 исследование сил поверхностного натяжения
- •Краткая теория
- •Натяжения по методу Ребиндера.
- •Описание установки и метода Ребиндера.
- •Определение постоянной прибора а
- •Определение коэффициента поверхностного натяжения по методу отрыва капель
- •Определение зависимости поверхностного натяжения растворов пав от концентрации
- •Приложение 2
- •Запись результатов наблюдений при определении коэффициента поверхностного натяжения
- •Литература
- •Контрольные вопросы.
- •Тестовые задания.
- •1. Коэффициентом поверхностного натяжения называется:
- •2. Какие вещества называются поверхностно-активными?
- •3. Явление капиллярности – это:
- •4. Явление газовой эмболии – это:
- •5. Почему пузырек воздуха подходя к месту разветвления сосуда закупоривает сосуд?
- •Лабораторная работа № 3 исследование вязкости биологических жидкостей
- •Краткая теория.
- •Исследование зависимости коэффициента вязкости жидкости от концентрации при помощи капиллярного вискозиметра.
- •Капиллярный вискозиметр и работа с ним.
- •7. Относительная погрешность при определении коэффициента внутреннего трения может быть вычислена по формуле:
- •Определение коэффициента внутреннего трения жидкости по методу падающего шарика (метод Стокса).
- •Краткая теория
- •Выполнение работы
- •Приложение 1 Табличные данные плотности
- •Литература
- •Глава 7.
- •Тестовые задания
- •Лабораторная работа № 4 устройство и принцип работы спектрографа
- •Краткая теория
- •II.Молекулярные спектры
- •Устройство спектрографа
- •Ход работы:
- •Градуировка спектрографа.
- •II.Определение длин волн в неизвестном спектре испускания.
- •Определение длин волн известных линий спектра
- •III. Наблюдение спектров поглощения
- •Определение погрешностей
- •Приложение 1
- •Литература:
- •Глава 24. Контрольные вопросы
- •Тестовые задания.
- •14. Спектр излучения по сравнению со спектром поглощения:
- •15. Полная энергия молекулы это:
- •16. Спектром излучения вещества называется:
- •17. При переходе атома из одного состояния в другое поглощается фотон, энергия которого определяется разностью энергий атомных состояний
- •18. Поглощение атомами энергии фотона характеризуется:
- •Лабораторная работа № 5 применение спектрофотометрических методов для исследования биологических жидкостей
- •5. Построение градировочных графиков
- •8. Что называется спектром излучения вещества?
- •Лабораторная работа № 6 терапевтическая техника, основанная на применении постоянного тока
- •Краткая теория
- •Выпрямительные устройства.
- •Выполнение работы
- •Основные этапы работы
- •Определение порога ощутимого тока на аппарате «Поток»
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •1. Что такое порог ощутимого тока?
- •2. Каков порог ощутимого тока для женщин?
- •3. Обеспечение защиты персонала и пациента от электроудара осуществля- ет в приборах 2 класса
- •4. Осциллограф - это
- •Лабораторная работа № 7 терапевтическая техника, основанная на применении вч, свч и увч токов
- •Краткая теория.
- •Устройство аппарата увч-4 и работа с ним.
- •Выполнение работы.
- •1.Изучение распределения ультравысокочастотного электрического поля аппарата увч.
- •Результаты измерения распределения ультравысокочастотного электрического пол между электродами аппарата увч.
- •2. Изучение нагревания электролитов и диэлектриков в электрическом поле высокой частоты с помощью аппарата увч.
- •Результаты наблюдений нагревания электролита и диэлектрика в электрическом поле увч.
- •Литература
- •Глава 18.
- •Контрольные вопросы
- •Тестовые задания
- •19. В каких тканях происходит наибольшее поглощение энергии электромагнитных волн?
- •Лабораторная работа № 8 медицинские низкочастотные приборы и аппараты
- •Краткая теория
- •Аппарат «электросон-2»
- •Электростимулятор лабораторный эсл-1
- •Ход работы
- •Аппарат «сним-1»
- •Ход работы
- •Аппарат для терапии синусоидальными модулированными токами «амплипульс-3»
- •Ход работы
- •Электростимулятор «эксн-2»
- •Аппарат франклинизации « аф-3»
- •Аппарат « полюс-1»
- •Ход работы.
- •Литература
- •Контрольные вопросы
- •Тестовые задания.
- •Лабораторная работа № 9 специальные приемы микроскопии
- •Краткая теория
- •Ход лучей в микроскопе
- •1.Определение полного увеличения микроскопа.
- •3. Измерение величины микрообъекта.
- •Литература
- •Контрольные вопросы
- •Тестовые задания
- •Лабораторная работа № 10 математическое моделирование сердечно-сосудистой системы
- •Краткая теория.
- •Ход работы
- •Литература
- •Глава 9.
- •Контрольные вопросы.
- •Тестовые задания
- •1. Что такое модель?
- •2. Математическая модель –это:
- •3. Работа, совершаемая сердцем, затрачивается на:
- •Лабораторная работа №11 устройство и принцип работы электрокардиографа. Регистрация экг и принципы анализа
- •Краткая теория
- •1. Введение
- •2. Электрические явления в клетках и органах
- •3. Понятие эквивалентного электрического
- •4. Мультипольный эквивалентный генератор
- •5. Дипольный эквивалентный генератор
- •5.1 Потенциал точки поля диполя.
- •5.2 Разность потенциалов двух точек поля диполя.
- •5.З. Токовый диполь
- •6. Основные положения теории Эйнтховена.
- •6.1. Сердце как электрический диполь.
- •6.2 Электрический вектор сердца.
- •6.3. Соотношения между проекциями момента диполя и напряжением
- •Треугольник Эйнштейна
- •5. 5. Отведения.
- •7. Основные компоненты электрокардиограммы.
- •8. Регистрация кардиограмм
- •9. 1.Работа с электрокардиографом
- •Ход работы:
- •Подготовка электрокардиографа к работе:
- •Глава 19.
- •11. При потенциале 2 mВ перо кардиографа отклонилось на 20 мм. Чему равна чувствительность прибора?
- •12. Чтобы определить потенциал зубцов электрокардиограммы необходимо:
- •13. Чтобы определить длительность сердечного цикла по кардиограмме нужно:
- •14. Укажите формулу потенциала в некоторой точке а, находящейся в поле диполя.
- •20. Укажите формулу дипольного момента электрического диполя?
- •Лабораторная работа № 12 построение средней электрической оси сердца в треугольнике эйнтховена
- •Краткая теория
- •Ход работы
- •3 .Построить среднюю электрическую ось сердца.
- •Литература
- •Контрольные вопросы.
- •Тестовые задания
- •Согласно теории Эйнтховена сердце это:
- •Электрический вектор сердца это:
- •8. Электрокардиограмма- это:
- •9. Направление электрической оси определяется величиной угла, образованной:
- •Электрическая ось – это:
- •Лабораторная работа № 13 поляризация света биосистемами
- •Краткая теория
- •Активный раствор
- •Простейшая схема поляриметра.
- •Прохождение поляризованного света через систему поляризатор-анализатор
- •Ход работы
- •Литература
- •Контрольные вопросы.
- •Тестовые задания
- •1. Какая волна называется плоскополяризованной?
- •2. Волна, в которой колебания светового вектора происходят в различных направлениях, но в некоторых направлениях амплитуда их больше, чем в других называется:
- •3. Что такое плоскость поляризации?
- •4. Если направление колебаний светового вектора беспорядочно меняется, а амплитуды его во всех направлениях одинаковы, то такая волна называется:
- •5.Устройство,позволяющее получать поляризованный свет из естественного, называется
- •6.Сформулировать закон Брюстера.
- •7. Что такое явление анизотропии?
- •8. В чем сущность явления двойного лучепреломления?
- •9. Что такое призма Николя?
Определение коэффициента поверхностного натяжения по методу отрыва капель
Описание капельного метода. Метод отрыва капель, не будучи очень точным, является, однако, употребляемым в медицинской практике. Теоретическое обоснование метода заключается в следующем: образование капель жидкости при ее вытекании из отверстия является результатом взаимодействия силы поверхностного натяжения и силы тяжести. Перед отрывом капли у конца трубки образуются перетяжка (а,в) по которой происходит отрыв. Длина контура по которому происходит отрыв, т.е. разрывается поверхностная пленка капли равна длине окружности перетяжки. Силы поверхностного натяжения по контуру будет равна
(1), где
-
радиус перетяжки.
Перед
самым отрывом эта сила уравновешивает
вес капли:
Если известны Р и , то находится из выражения:
(2)
В
ес
капли может быть легко определен, но
определение радиуса перетяжки весьма
затруднительно. Представлять же
в место радиуса перетяжки радиус трубки нельзя,
(Рис.5) т.к. радиус трубки больше радиуса перетяжки. Чтобы избежать измерения радиуса перетяжки берут две жидкости, одну эталонную, коэффициент поверхностного натяжения известен, другую исследуемую.
Тогда можно записать два уравнения:
Для
исследуемой жидкости
(3)
Для
эталонной жидкости
(4)
Где Р1 – вес капли исследуемой жидкости, Р2 – вес капли воды
Деля
почленно (3) на (4) получим
Для нахождения веса одной капли
поступают следующим образом: отсчитывают
число капель исследуемой жидкости и
воды вытекающей из одного и того же
объема. При этом скорость вытекания
капли должна быть одинакова, только при
этом условии можно считать, что радиусы
перетяжек будут равны. Пусть
число капель исследуемой жидкости, а
число капель эталонной жидкости во
взятом объеме V, а D1
D2 соответствующие
плотности этих жидкостей. Тогда вес
одной капли в каждой жидкости выразится
соотношением:
Для исследуемой жидкости.
(5)
для воды
(6)
где
- масса капель, V
– объем одной капли,
- ускорение силы тяжести
Отсюда
получим:
Таким образом, для определения
коэффициента поверхностного натяжения
нужно знать число капель n1
и n2 исследуемой
и эталонной жидкости, плотности этих
жидкостей и значение коэффициента
поверхности натяжения
эталонной
жидкости.
Определение зависимости поверхностного натяжения растворов пав от концентрации
Приборы и оборудование: сталагмометр, набор исследуемых жидкостей различной концентрации.
В работе определяется коэффициент поверхностного натяжения исследуемой жидкости, используя в качестве эталонной жидкости дистиллированную воду. Для определения коэффициента поверхностного натяжения применяется простой прибор-капельница. Она представляет собой прямую или коленчатую стеклянную трубку. При данной температуре между метками находится, определенный объем жидкости. Внизу трубка оканчивается очень узким отверстием в нижнем конце трубки. Капельница устанавливается по возможности вертикально.
Тщательно промыть прибор.
Набираем в прибор дистиллированную воду выше верхней метки, открываем кран.
Предоставив воде свободно капать, подсчитаем число капель дистиллированной воды в объеме между метками прибора. Счет капель начинают с того момента, когда мениск проходит мимо верхней метки, и заканчивают их счет в момент прохождения мениска мимо нижней метки. Опыт проделать 3 раза, средние данные записать в таблицу.
Заменим дистиллированную воду исследуемой жидкостью. По аналогии со (2) и (3) пунктом работы представляем жидкости свободно капать, производим подсчет капель жидкости
в том же объеме. Опыт проделать не менее 5 раз.
Измеряем температуру воды во время опыта.
Зная температуру воды из приложения 2 определяем коэффициент поверхностного натяжения воды
и плотность воды D2
Плотность D1 исследуемой жидкости определяется ареометром (или дается преподавателем).
По формуле
рассчитать коэффициент поверхностного натяжения жидкости, используя среднее значение числа капель ср.
Результаты занести в таблицу 2.
Построить график зависимости от
. Сделать вывод.