Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИЯ № 1. МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ Урав...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
246.78 Кб
Скачать

3.5. Метод Зейделя

Напомним, что при решении системы линейных уравнений вычислительные формулы имеют вид:

(3.27)

где .

Из (3.27) видно, что в методе простой итерации для получения нового значения вектора решений на i+1-ом шаге используются значения переменных, полученные не предыдущем шаге.

Основная идея метода Зейделя состоит в том, что на каждом шаге итерационного процесса при вычислении значения переменной учитываются уже найденные значения :

(3.28)

Достаточные условия сходимости итерационного процесса (3.23)(3.25) также являются достаточным условиями сходимости метода Зейделя.

Существует возможность автоматического преобразования исходной системы к виду, обеспечивающему сходимость итерационного процесса метода Зейделя. Для этого умножим левую и правую части системы (3.2) на транспонированную матрицу системы AT, получим равносильную систему

, (3.29)

где , .

Система (3.29) называется нормальной системой уравнений. Нормальные системы уравнений обладают рядом свойств, среди которых можно выделить следующие:

1) матрица C коэффициентов при неизвестных нормальной системы является симметрической (т.е. , );

2) все элементы, стоящие на главной диагонали матрицы C положительны (т.е. , ).

Последнее свойство дает возможность «автоматически» приводить нормальную систему (3.29) к виду, пригодному для итерационного процесса Зейделя:

(3.30)

где

, (3.31)

и

. (3.32)

Целесообразность приведения системы к нормальному виду и использования метода Зейделя вытекает из следующей теоремы:

Теорема 3.2. Итерационный процесс метода Зейделя для приведенной системы (3.30), эквивалентной нормальной системе (3.29), всегда сходится к единственному решению этой системы при любом выборе начального приближения [2].

Таким образом решение произвольной системы линейных уравнений вида (3.1) методом Зейделя реализуется в соответствие со следующим алгоритмом:

1. Ввод матрицы А коэффициентов исходной системы и вектор-столбца свободных членов.

Рис. 3.8. Функция, реализующая метод Зейделя. Аргументы функции: A матрица исходной системы, b вектор-столбец свободных членов, точность решения. Функция возвращает решение системы и его погрешность

3. Приведение нормальной системы к виду, пригодному для итерационного процесса Зейделя (3.30), (3.31).

4. Задание требуемой точности решения.

5. Циклическое выполнение итерационного процесса до достижения требуемой точности.

Документ пакета MathCAD, в котором реализован описанный выше алгоритм, состоит из следующих блоков:

1. Задание функции, выполняющей последовательно: а) приведение системы к нормальному виду; б) приведение нормальной системы к виду, пригодному для итерационного процесса Зейделя; в) реализация итерационного процесса Зейделя (рис. 3.8).

2. Задание матрицы коэффициентов при неизвестных исходной системы линейных уравнений

3. Решение системы линейных уравнений методом Зейделя