- •1. Предмет начертательной геометрии
- •2. Из истории начертательной геометрии
- •3. Способы проецирования
- •4. Инвариантные свойства параллельного проецирования
- •5. Ортогональное проецирование
- •6. Система трех плоскостей проекций. Эпюр Монжа
- •2. Свойства прямой на комплексном чертеже
- •3. Частные положения прямой в пространстве
- •4. Следы прямой линии
- •5. Плоскость. Способы задания плоскости на комплексном чертеже
- •6. Общее и частные положения плоскости в пространстве
- •3. Прямая и точка
- •4. Взаимные положения прямых
- •5. Прямая и точка на плоскости
- •6. Взаимное положение прямой и плоскости
- •2. Условие перпендикулярности прямой и плоскости
- •3. Условие перпендикулярности двух плоскостей
- •4. Определение длины отрезка и углов его наклона к плоскостям проекций
- •5. Линии наибольшего наклона (ската)
- •5.1. Необходимость преобразований комплексного чертежа
- •5.2. Задачи на преобразование комплексного чертежа
- •1. Необходимость преобразований комплексного чертежа
- •2. Задачи на преобразование комплексного чертежа
- •2. Задачи на определение расстояний между геометрическими фигурами
- •3. Задачи на определение действительных величин плоских геометрических фигур и углов между ними
- •1. Аналитический - при помощи уравнений;
- •2. При помощи каркаса;
- •3. Кинематический, т. Е. Перемещением линий в пространстве.
- •1. Линейчатые поверхности:
- •2. Поверхности вращения.
- •2. Линейчатые поверхности
- •1) Развертывающиеся поверхности;
- •2) Неразвертывающиеся, или косые поверхности.
- •3. Неразвертывающиеся (косые) линейчатые поверхности
- •2. Конические сечения
- •3. Взаимные пересечения поверхностей
- •2. Построение разверток многогранников
- •3. Построение разверток кривых развертывающихся поверхностей
4. Следы прямой линии
Следом прямой линии называется точка пересечения прямой с плоскостью проекций.
В системе двух плоскостей проекций p1 и p2 прямая в общем случае имеет два следа:
1. Горизонтальный Н (Н1, Н2);
2. Фронтальный F (F1, F2).
Это точки пересечения прямой соответственно с горизонтальной и фронтальной плоскостями проекций (рис. 2.11, а).
Установим правило нахождения следов прямой.
Для нахождения горизонтального следа прямой необходимо:
1) продолжить фронтальную проекцию прямой а до пересечения с осью Х (получим точку НХ º Н2)
2) восстановить перпендикуляр в точке НХ к оси Х (провести линию связи перпендикулярную к оси Х);
3) продолжить горизонтальную проекцию прямой а до пересечения с перпендикуляром;
4) полученная точка пересечения и будет горизонтальным следом прямой а Н º Н1 (рис. 2.11, б).
Рис. 2.8. Прямая, перпендикулярная Рис. 2.9. Прямая, перпендикулярная
горизонтальной плоскости проекций фронтальной плоскости проекций
Рис. 2.10. Прямая, перпендикулярная профильной плоскости проекций
а б
Рис. 2.11. Изображение следов прямой линии:
а - в пространстве; б - на эпюре
Для нахождения фронтального следа прямой необходимо:
1) продолжить горизонтальную проекцию прямой а до пересечения с осью Х (точка FXº F1);
2) восстановить перпендикуляр в точке FX к оси Х;
3) продолжить фронтальную проекцию прямой до пересечения с перпендикуляром;
4) полученная точка пересечения Fº F2 будет фронтальным следом прямой а (рис. 2.11, б).
В начертательной геометрии считается, что наблюдатель расположен в первом пространственном углу на бесконечном расстоянии от плоскостей проекций, поэтому видимыми геометрическими фигурами будут только те, которые расположены в первом октанте.
Проекции этих фигур в ортогональных и аксонометрических проекциях показываются сплошными линиями. Фигуры, расположенные в других пространственных углах, не видны наблюдателю, и их проекции показываются штриховыми линиями.
5. Плоскость. Способы задания плоскости на комплексном чертеже
На эпюре плоскость может быть задана графически одним из следующих способов, показанных на рис. 2.12.
Рис. 2.12. Способы задания плоскости:
а - тремя точками, не лежащими на одной прямой; б - прямой и точкой вне ее; в - двумя пересекающимися прямыми; г - двумя параллельными прямыми; д,е - плоской фигурой; ж - следами плоскости
6. Общее и частные положения плоскости в пространстве
Плоскость общего положения
Плоскость, которая занимает произвольное положение по отношению к плоскости проекций (углы наклона этой плоскости к плоскостям проекций - произвольные, но отличные от 0° и 90°) называется плоскостью общего положения (рис. 2.12.а).
На комплексном чертеже следы плоскости общего положения составляют с осью проекций также произвольные углы.
Рассмотрим изображение на комплексном чертеже и свойства плоскостей частного положения: плоскости, перпендикулярные и параллельные плоскостям проекций.
Плоскости, перпендикулярные плоскостям проекций (проецирующие плоскости)
1. Горизонтально-проецирующая плоскость α ┴ π1.
Плоскость α, перпендикулярная горизонтальной плоскости проекции π1, называется горизонтально проецирующей (рис. 2.13).
Основным свойством горизонтально-проецирующей плоскости является то, что любая фигура, расположенная в этой плоскости, проецируется на π1 в прямую линию (горизонтальный след плоскости h0α).
Угол b, который составляет горизонтальный след плоскости h0a c координатной осью Х, равен углу наклона плоскости a к плоскости проекций p2. Фронтальный след такой плоскости перпендикулярен оси Х (f0a ┴ X).
2. Фронтально-проецирующая плоскость β ┴ π2.
Плоскость b перпендикулярная фронтальной плоскости проекций π2 называется фронтально проецирующей (рис. 2.14).
а б в
г д е
ж
Рис. 2.12. Способы задания плоскости: а - тремя точками, не лежащими на одной прямой; б - прямой и точкой вне ее; в - двумя пересекающимися прямыми; г - двумя параллельными прямыми; д,е - плоской фигурой; ж - следами плоскости |
Рис. 2.13. Горизонтально-проецирующая плоскость
Рис. 2.14. Фронтально-проецирующая плоскость
Основным свойством фронтально-проецирующей плоскости является то, что любая фигура, расположенная в этой плоскости, проецируется на π2 в прямую линию (фронтальный след плоскости f0β). Угол a, который составляет фронтальный след плоскости f0β с координатной осью Х, равен углу наклона плоскости b к плоскости проекций π1. Горизонтальный след такой плоскости перпендикулярен оси Х.
Плоскости, параллельные плоскостям проекций
(плоскости уровня)
1. Горизонтальная плоскость γ || π1.
Плоскость γ, параллельная плоскости π1, называется горизонтальной (рис. 2.15).
Любая фигура, расположенная в такой плоскости, проецируется на горизонтальную плоскость проекций в натуральную величину (Δ А1В1С1 = ΔАВС, рис. 17). Фронтальный след этой плоскости параллелен оси Х (f0g | | Х).
2. Фронтальная плоскость δ | | π2.
Плоскость δ, параллельная плоскости π2, называется фронтальной.
Рис. 2.15. Плоскость, параллельная горизонтальной плоскости проекций
Любая фигура, расположенная в такой плоскости, проецируется на фронтальную плоскость проекций без искажения, т. е. в натуральную величину.
Горизонтальный след фронтальной плоскости параллелен оси Х.
Примечание. Плоскость, параллельная одной из плоскостей проекций, является частным случаем проецирующих плоскостей.
7. Следы плоскости
Следом плоскости a называется линия пересечения этой плоскости с плоскостью проекций.
В системе двух плоскостей проекций π1 и π2 плоскость в общем случае имеет два следа: горизонтальный ha0 и фронтальный fa0, которые являются пересечением плоскости a соответственно с горизонтальной и фронтальной плоскостями проекций (рис. 2.16).
Точки пересечения плоскости a с координатными осями X, Y, Z называются точками схода следов и обозначаются соответственно Sx, Sy, Sz (рис. 2.16.а).
а б
Рис. 2.16. Пример изображения следов плоскости: а - в пространстве; б - на комплексном чертеже
Вопросы для самоконтроля
1. В чем сущность построения эпюра точки?
2. Какие координаты точки однозначно определяют ее положение в пространстве?
3. Какие линии называют прямыми: а) общего положения; б) частного положения?
4. Какая прямая параллельна (перпендикулярна) плоскости проекций ?
5. Как строят профильную проекцию точки?
6. Что называется следом прямой и как он определяется?
7. Какие плоскости являются плоскостями частного положения?
8. Что называется следом плоскости и как он определяется?
9. Как называется прямая, которая принадлежит плоскости и перпендикулярна линиям уровня этой плоскости?
Взаимное расположение геометрических элементов. Основные позиционные задачи
1. Определение позиционных задач
2. Метод конкурирующих точек
3. Прямая и точка
4. Взаимные положения прямых
5. Прямая и точка на плоскости
6. Взаимное положение прямой и плоскости
7. Пересечение прямой и плоскости
1. Определение позиционных задач
Позиционными задачами называются такие задачи, в которых определяется взаимное расположение различных объектов и элементов геометрических фигур относительно друг друга.
2. Метод конкурирующих точек
Метод конкурирующих точек используется в начертательной геометрии для определения взаимной видимости двух геометрических фигур.
Конкурирующими точками называются такие точки пространства, которые имеют одинаковые координаты в плоскости проекций.
На рис. 3.1 показаны конкурирующие точки А и В (совпадают горизонтальные проекции А1 ≡ В1) и C и D (совпадают фронтальные проекции С2 ≡ D2).
Метод конкурирующих точек заключается в определении взаимной видимости точек (фигур) по координатам их несовпадающих проекций. Точка В находится выше точки А относительно плоскости π1 (ZB>ZA), поэтому на плоскости π1видна точка В, которая закрывает точку А (считается, что наблюдатель смотрит на плоскости проекций из бесконечности и направление луча зрения параллельно проецирующему лучу S).
На плоскости π2 видна точка D, так как она находится ближе к наблюдателю (дальше от плоскости π2, YD>YC) и закрывает невидимую точку С.
Методом конкурирующих точек пользуются при определении видимости элементов пересекающихся геометрических фигур.
