
- •Лекция №1 Введение. Цели и задачи изучения ботаники.
- •Лекция №2 Строение клетки. Клеточный сок.
- •Лекция №3 Растительные ткани
- •Лекция №4 Вегетативные органы растений. Корень. Стебель. Побег.
- •Растительные органы
- •Корень.
- •Побег. Стебель.
- •Лекция №5 Вегетативные органы растений. Лист.
- •Генеративные органы растений. Цветок.
- •Цветок.
- •Лекция №6 Генеративные органы растений. Соцветия. Семя. Плод.
- •Соцветия.
- •Плоды сочные многосемянные:
- •Сборные плоды:
- •Соплодия.
- •Распространение плодов и семян.
- •Систематика.
- •Низшие и высшие растения.
- •Царство Дробянки (Бактерии).
- •Подцарство Настоящие бактерии.
- •Подцарство Оксифотобактерии.
- •Царство Протоктисты.
- •Царство Грибы – Mycota (Fungi).
- •Высшие споровые растения.
- •Семенные растения.
- •Систематика.
- •Класс Однодольные.
- •Систематика Однодольных.
Лекция №1 Введение. Цели и задачи изучения ботаники.
Что изучает ботаника?
Какова роль растений в природе и в жизни человека?
Какие мероприятия по охране природы проводятся в России?
Какими нормативными актами в Российской Федерации регламентируется охрана природы?
Какое применение находят растения в медицине?
На какие дисциплины разделяется ботаника?
Какие основные положения клеточной теории?
Кто и когда проводил микроскопическое изучение растений?
Какие основные структурные единицы растительной клетки? Перечислите органеллы растительной клетки.
В чём отличие растительной клетки от животной?
Что такое протоплазма? Кто впервые предложил этот термин?
Что такое цитоплазма?
Какие есть виды пластид?
В чём особенности строения пластид?
Каковы функции пластид?
Митохондрии, какова их роль в клетке?
Каковы собенности строения митохондрий?
В чём отличие пластид и митохондрий от других органелл клетки?
Какие есть теории их происхождения?
Клеточное ядро, какова его структура и функции?
Что такое нуклеоплазма, хромосома, ген?
Каково строение и состав клеточной стенки?
Что такое матрикс клеточной стенки?
Какие функции выполняет клеточная стенка?
Каким изменениям в процессе жизнедеятельности может подвергнуться клеточная стенка?
Как в связи с этим изменяются функции клеточной стенки?
Что из себя представляют целлюлоза, лигнин, суберин, кутин?
Какими реактивами можно обнаружить в клеточной стенке целлюлозу, лигнин, суберин, кутин? Какие при этом наблюдаются эффекты?
Ботаника – наука о растениях, изучающая их строение, жизненные функции, распространение, происхождение, эволюцию.
Фотосинтезирующие растения являются источником жизни на Земле. В год при фотосинтезе преобразуется огромное количество солнечной энергии (3∙1021 ккал). Образуется 5,8∙1010 т органического вещества, в атмосферу выделяется 11,5∙1010 т кислорода. Растения широко используются человеком как пища и как корм для животных, как источник сырья для хозяйственных нужд, как источник лекарственных средств.
Ботаника разделяется на ряд дисциплин. Морфология – наука, описывающая внешнее и внутреннее строение растений. Макроскопическая морфология (невооружённым глазом) или органография – учение об органах растений. Микроскопическая морфология – цитология (учение о клетке), гистология (учение о тканях), анатомия (учение о внутреннем строении растений), и эмбриология (учение об образовании и развитии зародыша растений). Систематика – классификация растительных организмов. География растений – изучает распределение растений на земном шаре. Геоботаника – наука о растительных сообществах. Экология растений – изучает взаимоотношения растений с окружающей средой. Палеоботаника – воссоздает облик растительности Земли в предшествующие геологические эпохи.
Понятие о клетке и её строении возникло благодаря изобретению микроскопа в 1590 г. голландскими мастерами – братьями Янсен. Впервые увидел и описал клетку английский естествоиспытатель Роберт Гук в 1665 г. Рассматривая в микроскоп тонкий срез бутылочной пробки, Р. Гук обнаружил, что она состоит из многочисленных камер, которые он назвал клетками. В 1671 г. М. Мальпиги, а затем в 1682 г. Н. Грю впервые описали микроскопическое строение органов растений, подтвердив их клеточное строение. В 1676 г. А. Левенгук открыл мир микроскопических растений и описал окрашенные включения в клетках высших растений и водорослей. До XIX в. существовало представление, что основные функции клетки связаны с её стенкой, а содержимому клетки отводилась второстепенная роль. С усовершенствованием микротехники расширялись и познания о внутреннем содержимом клетки. Так, в 1831 г. Р. Браун обнаружил клеточное ядро и описал его как важнейшее образование. В 1839 г. Ян Пуркинье ввёл новый термин «протоплазма», т.е. живое содержимое клетки. Обобщив все накопленные знания о клетке, ботаник М. Шлейден (1838 г.) и зоолог Т. Шванн (1839 г.) сформулировали клеточную теорию, утверждавшую, что клетка есть единая элементарная и функциональная структура всех живых организмов. В 1858 г. Р. Вирхов добавил новое положение к клеточной теории, обосновав принцип преемственности клеток путём деления (каждая клетка происходит из клетки). В течение 350 лет для изучения клетки применялся световой, или оптический, микроскоп. С 1946 г. стали применять электронный микроскоп, разрешающая способность которого почти в 400 раз больше, чем у светового. Это позволило установить тонкую структуру – ультраструктуру – клетки и сделать множество крупнейщих открытий.
Клетка – основная форма организации живой материи, элементарная единица живого организма. Она представляет собой самовоспроизводящуюся систему, которая обособлена от окружающей среды и сохраняет определенную концентрацию химических веществ и одновременно осуществляет постоянный обмен с ней. Клетка как химическая система сохраняет стабильность (гомеостаз) в процессе обмена с окружающей средой. Роль барьера, отделяющего клетку от окружающей среды, играет плазматическая мембрана. Современная клеточная теория включает такие основные положения: все живые организмы имеют клеточное строение; клетка – наименьшая единица живого; все клетки принципиально сходны по химическому составу, строению и набору органелл, используют генетический код для синтеза белков, одинаково регулируют метаболизм, запасают и расходуют энергию; каждая новая клетка образуется в результате деления исходной клетки.
Многообразие форм клеток сводится к двум основным типам. Паренхимные (изодиаметрические многогранники – диаметр их примерно одинаков во всех направлениях, длина превышает ширину не более чем в 2 – 3 раза), например, клетки плодов арбуза, лимона, томата (видны невооруженным глазом). Прозенхимные (вытянутые, длина превышает ширину и толщину в 5 – 100 и более раз), например, волоски хлопчатника, волокна льна.
Растительные клетки характеризуются общностью строения – это эукариотические (имеющие оформленное ядро) клетки. От клеток других эукариотов – животных и грибов, их отличают следующие особенности: наличие пластид (особых внутриклеточных образований), целлюлозопектиновая жесткая клеточная стенка кнаружи от цитоплазматической мембраны, хорошо развитая система вакуолей.
Цитоплазма – обязательная часть клетки, где происходят все процессы клеточного обмена, кроме синтеза нуклеиновых кислот. Основу цитоплазмы составляет матрикс (гиалоплазма). Многообразные функции цитоплазмы выполняют специализированные обособленные образования – органеллы: пластиды, митохондрии, диктиосомы (аппарат Гольджи), микротельца, глиоксисомы, пероксисомы, рибосомы, .
Пластиды – это органеллы, характерные исключительно для растительных клеток. В них происходит первичный и вторичный синтез углеводов. Форма, размер, строение и функции пластид различны. По окраске различают три типа пластид: зеленые – хлоропласты, желто-оранжевые и красные хромопласты, бесцветные – лейкопласты (амилопласты, протеопласты, олеопласты). Возможно взаимопревращение хлоропластов и лейкопластов, и необратимое превращение хлоропластов и лейкопластов в хромопласты. Пластиды окружены двойной мембраной и заполнены матриксом.
Хлоропласты – органеллы фотосинтеза. Хлоропласты большинства высших растений имеют одинаковую форму – двояковыпуклой линзы. Матрикс – бесцветная мелкозернистая строма – пронизан параллельно расположенными дисками – ламеллами. Ламеллы собраны в стопки – граны. Основная масса пигментов хлоропласта (хлорофиллы ,, и другие) расположены в мембранах гран.
Лейкопласты – бесцветные округлые пластиды, в которых накапливаются запасные питательные вещества: крахмал – амилопласты, белки – протеопласты, масла – олеопласты. В одном лейкопласте могут (очень редко) накапливаться разные вещества. Лейкопласты могут и не накапливать запасные питательные вещества, например, в секреторных клетках они участвуют в синтезе терпеноидов (эфирных масел).
Хромопласты – пластиды оранжево-красного и желтого цвета, образуются из хлоропластов и лейкопластов в результате накопления в их строме пигментов – каротиноидов. Хромопласты – конечный этап в развитии пластид.
Пластиды и митохондрии принципиально отличаются от других органелл. Они отделены двухмембранной оболочкой и обладают относительной генетической автономностью, связанной с собственным белоксинтезирующим аппаратом ДНК и собственными рибосомами. Предполагается симбиотическое происхождение пластид и митохондрий. Предшественниками хлоропластов могли быть фотосинтезирующие цианобактерии, митохондрий – аэробные бактерии.
Ядро – важнейшая клеточная структура, регулирует всю жизнедеятельность клетки. Структура ядра – ядерная двухмембранная оболочка пронизанная ядерными порами, нуклеоплазма (кариолимфа), хромосомно-ядрыш-ковый комплекс. Хромосомы содержат нуклеиновую кислоту ДНК, отвечающую за наследственность. ДНК эукариот образует комплекс с гистоновыми белками и содержит информационно-функциональные участки – гены. Деление ядра лежит в основе размножения клеток. Внутри ядра находится хорошо заметная округлая структура – ядрышко, в нём происходит синтез рибосомальной РНК (рРНК). В ядре может быть одно или несколько ядрышек.
КЛЕТОЧНАЯ СТЕНКА
Клетки растений имеют твердые клеточные стенки, которые придают клетке определенную форму, защищают протопласт, противостоят внутриклеточному тургорному давлению и препятствуют разрыву клетки.
Клеточные стенки, как правило, бесцветные и легко пропускают свет. Через них могут проникать воздух и растворенные в нем низкомолекулярные вещества. В состав стенки входит целлюлоза (клетчатка), гемицеллюлоза (полуклетчатка) и пектиновые вещества. Целлюлоза составляет до 90% вещества клеточной стенки. Она представляет собой полисахарид с эмпирической формулой (С6Н10О5)n – молекулы целлюлозы имеют линейную (нитчатую) структуру и расположенными группировками в пучки – мицеллы. Мицеллы в свою очередь образуют фибриллы, промежуток между ними заполнены основным веществом оболочки (матриксом), состоящим из пектиновых веществ и гемицеллюлозой.
Часто в процессе жизнедеятельности протопласта, клеточная стенка подвергается различным изменениям и приобретает новые химические и физические свойства.
Одревеснение (лигнификация) – отложение в межмицеллярном пространстве лигнина (С57Н60О10). При этом возрастает твердость и прочность, но уменьшается пластичность. Одревесневшая клеточная стенка не теряет способность пропускать воздух и воду с растворенные в ней низкомолекулярными веществами. Протопласт может оставаться живым, хотя обычно отмирает.
Опробковение (суберинизация) – отложение в клеточную стенку очень стойкого жироподобного аморфного вещества – суберина. Опробковевшая клеточная стенка становится непроницаемая для воды и газов. К моменту завершения опробковения, протопласт отмирает.
Кутинизация – отложение кутин – вещества, близкого к суберину, но откладывающийся в поверхностных слоях наружных клеточных стенках и на их поверхностях, образуя при этом пленку (кутикулу), препятствующей испарению воды.
Минерализация – отложение в клеточную стенку солей кальция и кремнезема.
Ослизнение – превращение части целлюлозы и пектина в слизь и камедь (полисахариды, отличающиеся сильным набуханием в воде).
Изменение |
Вещество, вызвавшее изменение |
Реактив |
Наблюдаемый эффект |
Утолщение без видоизменения |
Целлюлоза |
Хлор цинк - йод |
Фиолетовая окраска
|
Одревеснение |
Лигнин |
Флороглюцин с концентрированной хлорной кислотой Сульфат анилина |
Малиновая окраска Желтая окраска |
Опробковение |
Суберин |
Судан – III |
Оранжевая окраска |
Кутинизация |
Кутин |
Судан – III |
Оранжевая окраска |
Минерализация |
Кремнезем |
Соли кальция, магния и др. - сжигание |
Минеральный скелет |
Ослизнение |
Слизь, камедь |
Вода |
Набухание |