- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Дифференциальные уравнения, допускающие понижение порядка
Кроме распространенных однородных и неоднородных уравнений второго порядка и высших порядков с постоянными коэффициентами, рядовому студенту часто приходится сталкиваться с другим достаточно обширным классом диффуров: дифференциальными уравнениями, допускающими понижение порядка.
Различают три основных типа таких уравнений, которые мы последовательно рассмотрим на данном уроке. По какому принципу решаются данные уравнения? Старо, как второй том матана – уравнения, допускающие понижение порядка, в конечном итоге сводятся к дифференциальным уравнениям первого порядка и интегрируются с помощью методов, которые вы уже должны знать из моих статей.
Люди собрались опытные, большие, поэтому не будем проводить разминку с перекидыванием резинового мячика из рук в руки, а сразу перейдем к делу. Но и чайники тоже могут присоединиться, я не выгоняю за дверь, а ставлю ссылки на темы, по которым у вас есть пробелы.
Метод повторного интегрирования правой части
Рассмотрим
дифференциальное уравнение вида
,
где
–
производная «энного» порядка, а правая
часть
зависит только
от «икс».
В простейшем случае
может
быть константой.
Данное дифференциальное уравнение решается последовательным интегрированием правой части. Причём интегрировать придется ровно раз.
На
практике наиболее популярной разновидность
является уравнение второго порядка:
.
Дважды интегрируем правую часть и
получаем общее решение. Уравнение
третьего порядка
необходимо
проинтегрировать трижды, и т.д. Но
диффуров четвертого и более высоких
порядков в практических заданиях что-то
даже и не припомню.
Пример 1
Найти
общее решение дифференциального
уравнения
Решение: Данное дифференциальное уравнение имеет вид .
Понижаем
степень уравнения до первого порядка:
Или
короче:
,
где
–
константа
Теперь
интегрируем правую часть еще раз, получая
общее решение:
Ответ: общее
решение:
Проверить
общее решение такого уравнения обычно
очень легко. В данном случае необходимо
лишь найти вторую производную:
Получено исходное дифференциальное уравнение , значит, общее решение найдено правильно.
Пример 2
Решить
дифференциальное уравнение
Это пример для самостоятельного решения. Как я уже где-то упоминал, иногда диффур может быть подшифрован. В предложенном примере сначала необходимо привести уравнение к стандартному виду . Решение и ответ в конце урока.
Нахождение частного решения (задача Коши) имеет свои особенности, которые мы рассмотрим в следующих двух примерах:
Пример 3
Найти частное решение уравнения, соответствующее заданным начальным условиям
,
,
Решение: Данное уравнение имеет вид . Согласно алгоритму, необходимо последовательно три раза проинтегрировать правую часть.
Сначала
понижаем степень уравнения до второго
порядка:
Первый интеграл принёс нам константу . В уравнениях рассматриваемого типа рационально сразу же применять подходящие начальные условия.
Итак,
у нас найдено
,
и, очевидно, к полученному уравнению
подходит начальное условие
.
В
соответствии с начальным условием
:
Таким
образом:
На
следующем шаге берём второй интеграл,
понижая степень уравнения до первого
порядка:
Выползла
константа
,
с которой мы немедленно расправляемся.
Хах. Комментирую пример, а в голове
возникла ассоциация, что я злой дед
Мазай с одноствольным ружьём. Ну и
действительно, константы отстреливаются,
как только покажут уши из-под интеграла.
В
соответствии с начальным условием
:
Таким
образом:
И, наконец, третий интеграл:
Для
третьей константы используем последний
патрон
:
Зайцы плачут, заряды были с солью.
Ответ: частное
решение:
Выполним
проверку, благо, она ненапряжная:
Проверяем
начальное условие
:
–
выполнено.
Находим
производную:
Проверяем
начальное условие
:
–
выполнено.
Находим
вторую производную:
Проверяем
начальное условие
:
–
выполнено.
Найдем
третью производную:
Получено
исходное дифференциальное уравнение
Вывод: задание выполнено верно
Наверное,
все обратили внимание на следующую
вещь: каков
порядок уравнения – столько и констант.
Уравнение второго порядка располагает
двумя константами
,
в уравнении третьего порядка – ровно
три константы
,
в уравнении четвертого порядка обязательно
будет ровно четыре константы
и
т.д. Причем, эта особенность справедлива
вообще для
любого диффура
высшего порядка.
Пример 4
Найти частное решение уравнения, соответствующее заданным начальным условиям
,
,
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Время от времени в дифференциальных уравнениях рассматриваемого типа приходится находить более трудные интегралы: использовать метод замены переменной, интегрировать по частям, прибегать к другим ухищрениям. Я намеренно подобрал простые примеры без всяких замысловатостей, чтобы больше внимания уделить именно алгоритму решения.
