- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Задачи по комбинаторике. Примеры решений
На данном уроке мы коснёмся элементов комбинаторики, которые потребуются для дальнейшего изучения теории вероятностей. Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут ;-)
Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность)и существенно то, что среди них нет одинаковых.
С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:
Перестановки, сочетания и размещения без повторений
Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений»? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различныхобъектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:
яблоко / груша / банан
Вопрос первый: сколькими способами их можно переставить?
Одна комбинация уже записана выше и с остальными проблем не возникает:
яблоко / банан / груша груша / яблоко / банан груша / банан / яблоко банан / яблоко / груша банан / груша / яблоко
Итого: 6 комбинаций или 6 перестановок.
Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!
Пожалуйста, откройте справочный материал Основные формулы комбинаторики(методичку удобно распечатать) и в пункте №2 найдите формулу количества перестановок.
Никаких
мучений – 3 объекта можно
переставить
способами.
Вопрос второй: сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?
Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)
а)
Один фрукт можно выбрать, очевидно,
тремя способами – взять либо яблоко,
либо грушу, либо банан. Формальный
подсчёт проводится по формуле
количества сочетаний:
Запись
в
данном случае следует понимать так:
«сколькими способами можно выбрать 1
фрукт из трёх?»
б) Перечислим все возможные сочетания двух фруктов:
яблоко и груша; яблоко и банан; груша и банан.
Количество
комбинаций легко проверить по той же
формуле:
Запись
понимается
аналогично: «сколькими способами можно
выбрать 2 фрукта из трёх?».
в)
И, наконец, три фрукта можно выбрать
единственным способом:
Кстати,
формула количества сочетаний сохраняет
смысл и для пустой выборки:
способом
можно выбрать ни одного фрукта –
собственно, ничего не взять и всё.
г)
Сколькими способами можно взять хотя
бы один фрукт?
Условие «хотя бы один» подразумевает,
что нас устраивает 1 фрукт (любой) или 2
любых фрукта или все 3 фрукта:
способами
можно выбрать хотя бы один фрукт.
Читатели, внимательно изучившие вводный урок по теории вероятностей, уже кое о чём догадались. Но о смысле знака «плюс» позже.
Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)
Вопрос третий: сколькими способами можно раздать по одному фрукту Даше и Наташе?
Для
того чтобы раздать два фрукта, сначала
нужно их выбрать. Согласно пункту «бэ»
предыдущего вопроса, сделать это
можно
способами,
перепишу их заново:
яблоко и груша; яблоко и банан; груша и банан.
Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов: яблоком можно угостить Дашу, а грушей – Наташу; либо наоборот – груша достанется Даше, а яблоко – Наташе.
И такая перестановка возможна для каждой пары фруктов.
В
данном случае работает формула
количества размещений:
Она отличается от формулы тем, что учитывает не только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждойвозможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей.
Пожалуйста, внимательно прочитайте пункт №2 методички Основные формулы комбинаторики и постарайтесь хорошо уяснить разницу между перестановками, сочетаниями и размещениями. В простейших случаях можно пересчитать все возможные комбинации вручную, но чаще всего это становится неподъемной задачей, именно поэтому и нужно понимать смысл формул.
Также напоминаю, что сейчас речь идёт о множестве с различными объектами, и если яблоко/грушу/банан заменить на 3 яблока или даже на 3 очень похожих яблока, то в контексте рассмотренной задачи они всё равно будут считаться различными.
Остановимся на каждом виде комбинаций подробнее:
