- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
Можно пойти четырьмя путями:
1) Изобразить проекцию и само тело. Это самый выигрышный вариант – если есть возможность выполнить два приличных чертежа, не ленитесь, делайте оба чертежа. Рекомендую в первую очередь.
2) Изобразить только тело. Годится, когда у тела несложная и очевидная проекция. Так, например, в разобранном примере хватило бы и трёхмерного чертежа. Однако тут есть и минус – по 3D-картинке неудобно определять порядок обхода проекции, и этот способ я бы советовал только людям с хорошим уровнем подготовки.
3) Изобразить только проекцию. Тоже неплохо, но тогда обязательны дополнительные письменные комментарии, чем ограничена область с различных сторон. К сожалению, третий вариант зачастую бывает вынужденным – когда тело слишком велико либо его построение сопряжено с иными трудностями. И такие примеры мы тоже рассмотрим. 4) Обойтись вообще без чертежей. В этом случае нужно представлять тело мысленно и закомментировать его форму/расположение письменно. Подходит для совсем простых тел либо задач, где выполнение обоих чертежей затруднительно. Но всё же лучше сделать хотя бы схематический рисунок, поскольку «голое» решение могут и забраковать.
Следующее тело для самостоятельного дела:
Пример 2
С
помощью тройного интеграла вычислить
объем тела, ограниченного поверхностями
В
данном случае область интегрирования
частично задана неравенствами, и это
даже лучше – множество неравенств
задаёт
1-й октант, включая координатные плоскости.
Примерный образец оформления задачи в конце урока.
Продолжаем разминаться:
Пример 3
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Выполнить чертёж.
Решение: формулировка «выполнить чертёж» даёт нам некоторую свободу, но, скорее всего, подразумевает выполнение пространственного чертежа. Однако и проекция тоже не помешает, тем более, она здесь не самая простая.
Придерживаемся отработанной ранее тактики – сначала разберёмся с поверхностями, которые параллельны оси аппликат. Уравнения таких поверхностей не содержат в явном виде переменную «зет»:
– уравнение
задаёт
координатную плоскость
,
проходящую через ось
(которая
на плоскости
определяется
«одноимённым» уравнением
);
–
уравнение
задаёт плоскость,
проходящую через «одноимённую» «плоскую»
прямую параллельно
оси
.
Но
две прямые
не
задают ограниченную проекцию, и, очевидно,
её должны «прорисовать» линии, по которым
параболический цилиндр
пересекает плоскость
.
Чтобы найти уравнения этих линий нужно
решить простейшую систему:
Подставим
в
первое уравнение:
–
получены две прямые,
лежащие в плоскости
,
параллельные оси
.
Изобразим
проекцию тела на плоскость
:
Ещё
раз призываю! –
если остаётся какое-то недопонимание
по выполнению чертежей и/или объяснениям,
обращайтесь к справочной статье Основные
поверхности пространства и
в тяжёлом случае – к урокам Уравнение
прямой на плоскости,Уравнение
плоскости.
Искомое
тело ограниченно плоскостью
снизу
и параболическим
цилиндром
сверху:
Составим
порядок обхода тела, при этом «иксовые»
и «игрековые» пределы интегрирования,
напоминаю, удобнее выяснять по двумерному
чертежу:
Таким
образом:
1)
2)
При
интегрировании по «игрек» – «икс»
считается константой, поэтому
константу
целесообразно
сразу вынести за знак интеграла.
3)
Ответ:
Да, чуть не забыл, в большинстве случаев полученный результат малополезно (и даже вредно) сверять с трёхмерным чертежом, поскольку с большой вероятностью возникнетиллюзия объёма, о которой я рассказал ещё на уроке Объем тела вращения. Так, оценивая тело рассмотренной задачи, лично мне показалось, что в нём гораздо больше 4-х «кубиков».
Следующий пример для самостоятельного решения:
Пример 4
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. Сделать чертежи данного тела и его проекции на плоскость .
Примерный образец оформления задачи в конце урока.
Не редкость, когда выполнение трёхмерного чертежа затруднено:
Пример 5 С помощью тройного интеграла найти объём тела, заданного ограничивающими его поверхностями
Решение:
проекция здесь несложная, но вот над
порядком её обхода нужно подумать. Если
выбрать 1-ый способ, то фигуру придётся
разделить на 2 части, что неиллюзорно
грозит вычислением суммы двух тройных
интегралов. В этой связи гораздо
перспективнее выглядит 2-й путь.
Выразим
и
изобразим проекцию данного тела на
чертеже:
Прошу
прощения за качество некоторых картинок,
я их вырезаю прямо из собственных
рукописей.
Выбираем
более выгодный порядок обхода фигуры:
Теперь
дело за телом. Снизу оно ограничено
плоскостью
,
сверху – плоскостью
,
которая проходит через ось ординат. И
всё бы было ничего, но последняя плоскость
слишком крутА и построить область не
так-то просто. Выбор тут незавиден: либо
ювелирная работа в мелком масштабе
(т.к. тело достаточно тонкое), либо чертёж
высотой порядка 20-ти сантиметров (да и
то, если вместится).
Но
есть и третий, исконно русский метод
решения проблемы – забить =) А вместо
трёхмерного чертежа обойтись словесным
описанием: «Данное тело ограничено
цилиндрами
и
плоскостью
сбоку,
плоскостью
–
снизу и плоскостью
–
сверху».
«Вертикальные»
пределы интегрирования, очевидно,
таковы:
Вычислим
объём тела, не забывая, что проекцию мы
обошли менее распространённым способом:
1)
2)
3)
Ответ:
Как
вы заметили, предлагаемые в задачах
тела не
дороже сотни баксов часто
ограничены плоскостью
снизу.
Но это не есть какое-то правило, поэтому
всегда нужно быть начеку – может
попасться задание, где тело расположено
и под плоскостью
.
Так, например, если в разобранной задаче
вместо
рассмотреть
плоскость
,
то исследованное тело симметрично
отобразится в нижнее полупространство
и будет ограничено плоскостью
снизу,
а плоскостью
–
уже сверху!
Легко
убедиться, что получится тот же самый
результат:
(помним,
что тело нужно обходить строго
снизу вверх!)
Кроме того, «любимая» плоскость может оказаться вообще не при делах, простейший пример: шар, расположенный выше плоскости – при вычислении его объёма уравнение не понадобится вообще.
Все эти случаи мы рассмотрим, а пока аналогичное задание для самостоятельного решения:
Пример
6
С помощью тройного интеграла
найти объём тела, ограниченного
поверхностями
Краткое решение и ответ в конце урока.
Переходим ко второму параграфу с не менее популярными материалами:
