- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Какова предпосылка для перехода к полярным координатам?
Очевидно, что основной предпосылкой является наличие окружности (ей). Подчёркиваю, что это лишь предпосылка, а не обязательное правило! То есть, область интегрирования может быть ограничена окружностью (ями), но переход к полярным координатам только усложнит решение, а то и вообще заведёт его в тупик. И такие примеры встречаются реально.
Итак, площадь фигуры вычислим с помощью двойного интеграла, используя полярную систему координат:
По формулам перехода найдём полярные уравнения окружностей:
Теперь
выясним порядок обхода области. Луч
радара входит в область через
окружность
и
выходит из неё через окружность
(красная
стрелка), при этом он осуществляет
поворот от полярной оси
до
угла
(зелёная
стрелка).
Напомню
также, что «альфа» и «бета» – это не
просто формальные значения углов:полярное
уравнение
непосредственно
задаёт полярную ось (положительное
направление оси абсцисс), а уравнение
– луч,
исходящий из полюса и совпадающий с
верхней частью прямой
.
Примечание: если рассматривать обобщенные полярные координаты, то уравнение определяет полярную ось и её продолжение (всю ось абсцисс), а уравнение – всю прямую
В
рассматриваемой задаче дана «хорошая»
прямая
и
значение угла
понятно
«с ходу». Как найти угол в общем случае?
Из материалов статьи Прямая
на плоскости вспоминаем,
что угловой коэффициент прямой
равен
тангенсу угла наклона данной прямой к
положительному направлению оси
абсцисс:
.
В данном случае
,
откуда следует, что
(если
тяжко с числами –тригонометрические
таблицы в
помощь).
Возвращаемся
к решению. По результатам «сканирования»
области мы выяснили, что на
промежутке
полярный
радиус изменяется в пределах
.
Перейдём
к повторным интегралам:
Остальное
– дело техники:
1)
2)
Ответ:
Прикинув по чертежу количество клеточек, приходим к выводу, что полученный результат вполне и вполне правдоподобен.
Следующие два примера для самостоятельного решения:
Пример 3
С
помощью двойного интеграла вычислить
площадь фигуры, ограниченной линиями
Пример 4
Вычислить
двойной интеграл, используя полярные
координаты
В примере №4 мы встретили ещё одну распространённую формулировку условия, в которой предложено непосредственно вычислить двойной интеграл. Да, он численно равен площади области , но, коль скоро, о площади изначально молчок, то и в решении об этом не нужно упоминать ;-) Подумайте, как грамотно записать ответ задания.
Примерные образцы решений и чертежи в конце урока. Я их оформил в разном стиле, выбирайте, что больше нравится.
То были заезженные типовики, а сейчас на очереди более редкий, но очень интересный и поучительный экземпляр:
Пример 5
Вычислить
двойной интеграл
Решение: определённый интеграл задаёт площадь области интегрирования, но о площади нас никто не спрашивал, поэтому никого не будем загружать своей эрудицией =) К тому же она сейчас ой как потребуется для других целей.
В чём заключается особенность этого задания? Прежде всего, бросается в глаза, что область «дэ» ограничена единственной кривой, и по характерным признакам – это какая-то алгебраическая линия 4-го порядка. Основная проблема у нас с чертежом. Конечно, можно погрузиться в справочники, но на это нет ни времени, ни особого желания. Поэтому мы попытаемся ограничиться общим анализом и обойтись совсем без чертежа.
