- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Как вычислить двойной интеграл в полярной системе координат?
Закончим бой с двойным интегралом нокаутом в третьем раунде. Что нужно знать и уметь для полной победы? Ещё раз взглянем на заголовок статьи… очевидно, вы должны знать, что такое полярные координаты… и уметь решать двойные интегралы =) Стоп-стоп, не закрываем в панике страницу – первое осваивается в считанные минуты, ну а второе, конечно, несколько дольше. Итак, чайникам – двойные интегралы для чайников, остальных же читателей приглашаю ознакомиться с третьим уроком темы. Новизны будет совсем немного и если вы мало-мальски набили руку на вычислении двойных интегралов, то особых трудностей возникнуть не должно.
Типовое задание формулируется примерно так: «Вычислить двойной интеграл, используя полярную систему координат». После чего для решения предлагается … обычный двойной интеграл в декартовых координатах по области . Сначала рассмотрим более простой и распространённый случай, когда подынтегральная функция 2-х переменных и двойной интеграл численно равен площади области интегрирования. Разберём алгоритм решения на бесхитростной демо-задаче:
Пример 1
Вычислить
площадь плоской фигуры, ограниченную
линиями
,
с помощью двойного интеграла, используя
полярную систему координат
Решение:
На первом этапе ничего нового. Выполняем
чертёж области
в
прямоугольной системе координат. Линейное
неравенство
определяет
правую полуплоскость, включая ось
,
а уравнение
,
очевидно, задаёт какую-то линию
2-го порядка.
Чтобы выяснить, какую именно – выделим
полный квадрат:
– окружность единичного
радиуса с центром в точке
.
Таким
образом, требуется вычислить площадь
половинки круга:
Не
упустим возможность сразу узнать ответ.
По школьной формуле у нас должно
получиться:
Площадь фигуры стандартно рассчитывается по формуле , однако по условию нужно воспользоваться полярными координатами. На всякий случай закомментирую расположение полярной системы координат: полюс совпадает с началом прямоугольной системы, а полярная ось – с положительным направлением оси . Полярную ось можно прочертить жирнее, но лично я часто этим пренебрегаю.
При переходе к полярной системе координат произведение дифференциалов ВСЕГДА превращается в следующую вещь:
То есть, от интегрирования по декартовым «иксу» и «игреку» мы перешли к интегрированию по полярному радиусу «эр» и полярному углу «фи». Обратите внимание на дополнительно появившийся множитель , образно говоря, это «плата за переход», любители высшей математики могут погуглить якобиан перехода к полярным координатам. Практическая же сторона вопроса состоит в том, что этотмножитель «эр» терять нельзя.
Таким
образом:
Но
это ещё не всё – ведь границы области
тоже
заданы в декартовой системе.
Используем формулы
перехода к полярным координатам
.
Ось ординат не трогаем, а вот окружность
потревожим:
–
получено
типовое уравнение, на котором заострялось
внимание ещё в статье Полярные
координаты.
Теперь
двойной интеграл
необходимо
свести к повторным интегралам. Для этого
нужно выяснить порядок обхода области.
На уроке Двойные
интегралы для чайников мы
орудовали виртуальной лазерной указкой,
в полярных же координатах более удачна
другая ассоциация – просвечивание
области
радаром.
Представьте, что из точки полюса исходит
луч света и вращается против
часовой стрелки.
Когда
луч радара поворачивается от полярной
оси
до
угла
(зелёная
стрелка), то он входит в
область
непосредственно
из полюса (начиная со значения
)
и выходит из
неё через окружность
(красная
стрелка). Таким образом, на
промежутке
полярный
радиус изменяется в пределах
и
область интегрирования полностью
«просканирована».
В
результате:
Множитель , разумеется, уходит во внутренний интеграл, где осуществляется интегрирование по «эр».
Начинающим вновь рекомендую оформить концовку в два пункта:
1)
,
чтобы продемонстрировать на следующем
шаге примечательный факт, дальше упрощать
пока не буду.
2) Подставляем трофей во внешний интеграл:
Заметьте,
что здесь прорисовалась знакомая формула
площади криволинейного
сектора
,
которой мы активно пользовались на
уроке Вычисление
площади в полярных координатах с помощью
интеграла,
и фактически 2-ой пункт – это повторение
пройденного материала!
Используем формулу понижения степени:
Что и требовалось получить.
Ответ:
В
простых случаях, как этот, вычисления
можно оформить и одной строкой:
Но
злоупотреблять короткой дорожкой не
советую – повышается риск запутаться.
В разобранной задаче жёстко требовалось использовать полярную систему координат, и это очень хорошо! Я не иронизирую. Как ни странно, более свободная формулировка условия может здОрово осложнить жизнь. Отрубим ящерице хвост:
«Вычислить площадь плоской фигуры, ограниченную линиями , с помощью двойного интеграла»
Дело в том, что площадь данной фигуры рассчитывается и с помощью двойного интеграла в прямоугольной системе координат. Но решение получается длительным и громоздим (см. задачу нахождения площади круга), и если человек не знает о возможности перехода к полярным координатам (а по условию это не запрещено!), то будет загружен трудной работой.
Давайте ещё укоротим условие:
«Вычислить площадь плоской фигуры, ограниченную линиями »
Здесь появилась новая степень свободы, и площадь фигуры помимо прочих способов можно рассчитать с помощью однократного интеграла (решение будет почти совпадать с решением через двойной интеграл). А люди со своеобразным чувством юмора вычислят площадь и по школьной формуле, чтобы затем настойчиво доказывать рецензенту корректность своего решения =) В чём, кстати, будут правы – ибо поборник конкретики должен и задачи ставить конкретно!
Чуть позже я коснусь ещё одной важной разновидности условия, а пока рассмотрим более содержательное задание:
Пример 2
С
помощью двойного интеграла вычислить
площадь фигуры, ограниченной линиями
Решение:
Изобразим данную фигуру на чертеже.
С прямыми
всё
понятно, осталось прояснить вид линий
2-го порядка.
Выделяем полные квадраты:
– окружность единичного
радиуса с центром в точке
.
– окружность с
центром в точке
радиуса
2.
Таким
образом:
В условии задачи ничего не сказано о полярной системе координат, и поэтому площадь фигуры можно рассчитать «обычным» двойным интегралом. Но что-то не хочется. Впрочем, если найдётся энтузиаст и отправит мне разборчивое решение, то я его, пожалуй, опубликую в качестве страшилки =)
