- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Двойные интегралы для чайников
Данный урок открывает обширную тему кратных интегралов, с которыми студенты обычно сталкиваются на втором курсе. Двойными и тройными интегралами можно запугать обывателя не хуже, чем дифференциальными уравнениями, поэтому сразу же разберёмся с вопросом: сложно или нет? Конечно, некоторым будет сложно, и, если честно, я немного слукавил с названием статьи – для того, чтобы научиться решать двойные интегралы, необходимо обладать некоторыми навыками. Во-первых, если речь идёт об интегралах, то, очевидно, придётся интегрировать. Логично. Следовательно, для освоения примеров нужно уметь находить неопределённые интегралы и вычислятьопределённые интегралы хотя бы на среднем уровне. Хорошая новость состоит в том, что сами по себе интегралы в большинстве случаев достаточно просты.
Кому придётся туговато? Понятное дело. Тем, кто много пил пиво в течение первых семестров. Однако нормальных студентов тоже обнадёжу – на сайте есть все материалы, чтобы восполнить пробелы или недопонимание. Просто вам придётся потратить больше времени. Ссылки на темы, которые следует изучить или повторить, будут прилагаться по ходу статьи.
На вводном уроке поэтапно и подробно будут разобраны следующие базовые моменты:
– Понятие двойного интеграла
– Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
– Как вычислить площадь плоской фигуры с помощью двойного интеграла?
После того, как вы ХОРОШО поймёте все азы, можно будет перейти к статье Как вычислить двойной интеграл? Примеры решений. Кроме того, существует распространенная задача о вычислении двойного интеграла в полярных координатахи типовое приложение о нахождении центра тяжести плоской ограниченной фигуры.
Начнём с насущного вопроса – что это такое?
Понятие двойного интеграла
Двойной
интеграл в общем виде записывается
следующим образом:
Разбираемся
в терминах и обозначениях:
–
значок двойного интеграла;
–
область интегрирования (плоская
фигура);
–
подынтегральная функция
двух переменных,
часто она довольно простая;
–
значки дифференциалов.
Что значит вычислить двойной интеграл?
Вычислить
двойной интеграл – это значит найти
ЧИСЛО.
Самое обычное число:
И
крайне желательно найти его правильно
=)
Результат (число ) может быть отрицательным. И ноль тоже запросто может получиться. Специально остановился на данном моменте, поскольку немало студентов испытывают беспокойство, когда ответ получается «шото вроде как странный».
Многие помнят, что «обычный» определённый интеграл – тоже число. Здесь всё так же. У двойного интеграла существует и отличный геометрический смысл, но об этом позже, всему своё время.
Как вычислить двойной интеграл?
Для
того чтобы вычислить двойной интеграл,
его необходимо свести к так
называемымповторным
интегралам.
Сделать это можно двумя
способами. Наиболее распространён
следующий способ:
Вместо
знаков вопроса необходимо расставить
пределы интегрирования. Причём одиночные
знаки вопроса
у
внешнего интеграла – это числа,
а двойные знаки вопроса
у
внутреннего интеграла – это функции одной
переменной
,
зависящие от «икс».
Откуда взять пределы интегрирования? Они зависят от того, какая в условии задачи дана область . Область представляет собой обычную плоскую фигуру, с которой вы неоднократно сталкивались, например, при вычислении площади плоской фигуры иливычислении объема тела вращения. Очень скоро вы узнаете, как правильно расставлять пределы интегрирования.
После
того, как переход к повторным интегралам
осуществлён, следуют непосредственно
вычисления: сначала берётся внутренний
интеграл
,
а потом – внешний. Друг за другом. Отсюда
и название – повторные интегралы.
Грубо говоря, задача сводится к вычислению двух определённых интегралов. Как видите всё не так сложно и страшно, и если вы совладали с «обыкновенным» определённым интегралом, что мешает разобраться с двумя интегралами?!
Второй
способ перехода к повторным интегралам
встречается несколько реже:
Что
поменялось? Поменялся порядок
интегрирования: теперь внутренний
интеграл берётся по «икс», а внешний –
по «игрек». Пределы интегрирования,
обозначенные звёздочками – будут
другими! Одиночные
звёздочки внешнего интеграла – это числа,
а двойные звёздочки внутреннего интеграла
– это обратные
функции
,
зависящие от «игрек».
Какой
бы мы ни выбрали способ перехода к
повторным интегралам, окончательный
ответ обязательно получится один и тот
же:
Пожалуйста, запомните это важное свойство, которое можно использовать, в том числе, для проверки решения.
