- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Сходимость числовых положительных рядов Необходимый признак сходимости ряда
Одной из ключевых задач теории числовых рядов является исследование ряда на сходимость. При этом возможны два случая:
1) Ряд
расходится.
Это значит, что бесконечная сумма равна
бесконечности:
.
Хороший пример расходящегося числового
ряда встретился в начале урока:
.
Здесь совершенно очевидно, что каждый
следующий член ряда – больше, чем
предыдущий, поэтому
и,
значит, ряд расходится. Чуть ниже мы
рассмотрим более строгий математический
критерий для данного примера.
2) Ряд
сходится.
Это значит, что бесконечная сумма равна
некоторому конечному
числу
:
.
В качестве примера сходящегося числового
ряда можно привести бесконечно убывающую
геометрическую прогрессию, известную
нам со школы:
.
Сумму членов бесконечно убывающей
геометрической прогрессии можно найти
по формуле:
,
где
–
первый член прогрессии,
–
основание прогрессии. В данном
случае:
,
.
Таким образом:
Получено
конечное число, значит, ряд
сходится,
что и требовалось доказать.
В подавляющем большинстве случаев найти сумму ряда затруднительно, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.
Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши, некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. На этом уроке мы рассмотрим необходимый признак сходимости ряда и признаки сравнения.
! Для
дальнейшего усвоения урока необходимо хорошо
понимать, что такое предел и хорошо
уметь раскрывать неопределенность
вида
.
Для повторения материала обратитесь к
статье Пределы.
Примеры решений.
Необходимый признак сходимости ряда
Я не буду записывать сам признак (его можно найти в любом учебнике), а сформулирую очевидное следствие:
Если общий член ряда не стремится к нулю, то ряд расходится
Или
короче: Если
,
то ряд расходится.
В качестве «динамической» переменной вместо «икса» у нас выступает . Букву можно заменить другой буквой, и это не страшно, однако есть разница с содержательной точки зрения. Освежим наши знания: пределы с «иксом» называют пределами функций, а пределы с переменной «эн» – пределами числовых последовательностей. Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.
Докажем,
что ряд из первого примера
расходится.
Общий
член ряда:
Вывод:
ряд
расходится,
так как не выполнен необходимый признак
сходимости ряда.
Необходимый признак сходимости ряда довольно часто встречается в практических заданиях:
Пример 6
Исследовать
ряд на сходимость
В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений, наверняка уловил, что когда старшие степени числителя и знаменателя равны, тогда предел равен конечному числу.
Решаем:
Делим
числитель и знаменатель на
Исследуемый
ряд расходится,
так как не выполнен необходимый признак
сходимости ряда.
Готово.
Пример 7
Исследовать
ряд на сходимость
Это пример для самостоятельного решения. Полное решение и ответ в конце урока
Итак, когда нам дан ЛЮБОЙ ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли общий член к нулю? Если не стремится – оформляем решение по образцу примеров №№6,7 и даём ответ о том, что ряд расходится.
Какие
типы очевидно расходящихся рядов мы
рассмотрели? Сразу понятно, что расходятся
ряды вроде
или
.
Также расходятся ряды из примеров
№№6,7: когда
в числителе и знаменателе находятся
многочлены, и старшая степень числителя
больше либо равна старшей степени
знаменателя.
Во всех этих случаях при решении и
оформлении примеров мы используем
необходимый признак сходимости ряда.
Почему признак называется необходимым? Потому-что, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится. Или так: для того, чтобы ряд сходился, необходимо, чтобы его общий член стремился к нулю; но этого еще – не достаточно. Если общий член ряда стремится к нулю, то ряд может, как сходиться, так и расходиться! В таких случаях для решения примеров нужно использовать другие признаки.
Знакомьтесь:
Данный
ряд называется гармоническим
рядом.
Пожалуйста, запомните! Среди числовых
рядов он является прима-балериной.
Точнее, балеруном =)
Легко
заметить, что
,
НО. В теории математического анализа
доказано, чтогармонический
ряд расходится.
Также
следует запомнить понятие обобщенного
гармонического ряда:
1)
Данный ряд расходится при
.
Например, расходятся ряды
,
,
.
2)
Данный ряд сходится при
.
Например, сходятся ряды
,
,
.
Еще раз подчеркиваю, что почти во всех
практических заданиях нам совершенно
не важно, чему равна сумма, например,
ряда
, важен
сам факт его сходимости.
Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .
