- •Однородные дифференциальные уравнения первого порядка
- •Как решить однородное дифференциальное уравнение?
- •Немного о потере решений в дифференциальных уравнениях
- •Дифференциальные уравнения в полных дифференциалах. Примеры решений
- •Рассмотрим алгоритм решения уравнения в полных дифференциалах
- •Дифференциальное уравнение Бернулли. Примеры решений
- •Дифференциальное уравнение Бернулли имеет вид:
- •Как решить дифференциальное уравнение Бернулли?
- •Вывод: Уравнение Бернулли с помощью замены сводится к линейному неоднородному уравнению первого порядка
- •Дифференциальные уравнения, допускающие понижение порядка
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Дифференциальные уравнения второго порядка и высших порядков. Линейные ду второго порядка с постоянными коэффициентами. Примеры решений.
- •Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные однородные уравнения высших порядков
- •Как решить неоднородное дифференциальное уравнение второго порядка?
- •Неоднородные уравнения – это просто!
- •Алгоритм решения неоднородного ду следующий:
- •Метод вариации произвольных постоянных. Примеры решений
- •Метод вариации произвольной постоянной для линейного неоднородного уравнения первого порядка
- •Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами
- •Как решить систему дифференциальных уравнений?
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •Ряды для чайников. Примеры решений
- •Понятие числового положительного ряда
- •Сходимость числовых положительных рядов Необходимый признак сходимости ряда
- •Необходимый признак сходимости ряда
- •Признаки сравнения для положительных числовых рядов
- •Предельный признак сравнения числовых положительных рядов
- •Как найти сумму ряда?
- •Что такое сумма ряда?
- •Признаки сходимости рядов. Признак Даламбера. Признаки Коши
- •Признак сходимости Даламбера
- •Радикальный признак Коши
- •Интегральный признак Коши
- •Функциональные ряды. Степенные ряды. Область сходимости ряда
- •Понятие функционального ряда и степенного ряда
- •Сходимость степенного ряда. Интервал сходимости, радиус сходимости и область сходимости
- •Исследование степенного ряда на сходимость
- •Разложение функций в степенные ряды. Ряд Тейлора. Ряд Маклорена. Примеры решений
- •Понятие суммы степенного ряда
- •Разложение функций в степенной ряд. Ряд Тейлора. Ряд Маклорена
- •Примеры разложения функций в ряд Маклорена
- •Примеры разложения функций в ряд Тейлора по степеням , когда
- •Приближенные вычисления с помощью рядов
- •Приближённое вычисление числа с помощью ряда
- •Ряды Фурье. Примеры решений
- •Разложение функции в ряд Фурье на промежутке
- •Что нужно сделать в нижеследующих заданиях?
- •Как разложить функцию в ряд Фурье?
- •Разложение функции в ряд Фурье на произвольном периоде
- •Разложение в ряд Фурье чётных и нечётных функций
- •Двойные интегралы для чайников
- •Понятие двойного интеграла
- •Что значит вычислить двойной интеграл?
- •Как вычислить двойной интеграл?
- •Алгоритм решения двойного интеграла:
- •Область интегрирования. Порядок обхода области интегрирования. Как изменить порядок обхода?
- •Как вычислить площадь плоской фигуры с помощью двойного интеграла?
- •Как вычислить двойной интеграл? Примеры решений
- •Двойной интеграл как объем тела
- •Как вычислить двойной интеграл в полярной системе координат?
- •Какова предпосылка для перехода к полярным координатам?
- •Можно ли обойтись без чертежа?
- •Тройные интегралы. Вычисление объема тела. Тройной интеграл в цилиндрических координатах
- •Что значит вычислить тройной интеграл и что это вообще такое?
- •Как решить тройной интеграл?
- •Нужно ли делать чертёжи, если условие задачи не требует их выполнения?
- •Тройной интеграл в цилиндрических координатах
- •Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла
- •Физические приложения тройного интеграла
- •Центр тяжести тела
- •Функции комплексной переменной. Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Понятие функции комплексной переменной
- •Действительная и мнимая часть функции комплексной переменной
- •Дифференцирование функций комплексной переменной. Условия Коши-Римана
- •Формулы Эйлера
- •Теория вероятностей. Базовые термины и понятия
- •Рекомендуемый порядок изучения темы:
- •События. Виды событий
- •Совместные и несовместные события. Противоположные события. Полная группа событий
- •Алгебра событий
- •Вероятность события
- •Классическое определение вероятности:
- •Задачи по комбинаторике. Примеры решений
- •Перестановки, сочетания и размещения без повторений
- •Перестановки
- •Сочетания
- •Размещения
- •Правило сложения и правило умножения комбинаций
- •Перестановки, сочетания и размещения с повторениями
- •Перестановки с повторениями
- •Сочетания с повторениями
- •Размещения с повторениями
- •Теоремы сложения и умножения вероятностей. Зависимые и независимые события
- •Зависимые и независимые события
- •Как определить зависимость/независимость событий?
- •Задачи на теоремы сложения вероятностей несовместных и умножения вероятностей независимых событий
- •Формула полной вероятности и формулы Байеса
- •Задачи на формулы Байеса
- •Независимые испытания и формула Бернулли
- •Наивероятнейшее число появлений события в независимых испытаниях
- •Локальная и интегральная теоремы Лапласа
- •Локальная теорема Лапласа
- •Интегральная теорема Лапласа
- •Относительная частота события и статистическое определение вероятности
- •Относительная частота события и статистическая вероятность
- •Вероятность отклонения относительной частоты от вероятности
- •Как определить, сколько нужно провести испытаний чтобы с заранее заданной вероятностью обеспечить желаемую точность ?
Метод характеристического уравнения (метод Эйлера)
Как уже отмечалось в начале статьи, с помощью характеристического уравнения систему дифференциальных уравнений требуют решить довольно редко, поэтому в заключительном параграфе я рассмотрю всего лишь один пример.
Пример 5
Дана
линейная однородная система дифференциальных
уравнений
Найти общее решение системы уравнений с помощью характеристического уравнения
Решение: Смотрим
на систему уравнений и составляем
определитель второго порядка:
По
какому принципу составлен определитель,
думаю, всем видно.
Составим
характеристическое уравнение, для этого
из каждого числа, которое располагается
на главной
диагонали,
вычитаем некоторый параметр
:
На чистовике, естественно, сразу следует записать характеристическое уравнение, я объясняю подробно, по шагам, чтобы было понятно, что откуда взялось.
Раскрываем
определитель:
И
находим корни квадратного уравнения:
Если
характеристическое уравнение имеет два
различных действительных корня,
то общее решение системы дифференциальных
уравнений имеет вид:
Коэффициенты
в показателях экспонент
нам
уже известны, осталось найти коэффициенты
1)
Рассмотрим корень
и
подставим его в характеристическое
уравнение:
(эти
два определителя на чистовике тоже
можно не записывать, а сразу устно
составить нижеприведенную систему)
Из
чисел определителя составим систему
двух линейных уравнений с двумя
неизвестными:
Из
обоих уравнений следует одно и то же
равенство:
Теперь
нужно подобрать наименьшее значение
,
такое, чтобы значение
было
целым. Очевидно, что следует задать
.
А если
,
то
2)
Всё аналогично. Рассмотрим корень
и
устно подставим его в характеристическое
уравнение:
Из
чисел определителя составим систему:
Из
обоих уравнений следует равенство:
Подбираем наименьшее значение
,
таким образом, чтобы значение
было
целым. Очевидно, что
.
Все
четыре коэффициента
найдены,
осталось их подставить в общую формулу
Ответ: общее
решение:
Для тренировки можете с помощью характеристического уравнения решить Пример 1 (подходит только он) данного урока, тем более, есть известный ответ.
Что делать, когда корни характеристического уравнения являются кратными или сопряженными комплексными? В своей коллекции искал-искал примеры, да так и не нашел. Потом стал вспоминать, а встречались ли мне такие уравнения вообще? Да, встречалось. Один раз много лет назад.
Но что делать, если вам таки попался раритет? Порекомендую неплохую, вполне доступную книгу по диффурам: М.Л. Краснов, А.И. Киселев, Г.И. Макаренко Дифференциальные уравнения. Можно прямо выделить мышкой авторов, название книги и скопировать их в поисковик. Лично не закачивал (у меня есть бумажная версия книги), но весь серп забит бесплатными предложениями о закачке. В разделе про системы дифференциальных уравнений рассмотрены все случаи решения системы методом характеристического уравнения (методом Эйлера).
Учитывая крайне низкую вероятность встречи с такими уравнениями, не считаю нужным включать их в урок, при необходимости юзайте рекомендованную мной книгу.
Так же редко встречаются системы из трех дифференциальных уравнений с тремя переменными (вспомнил от силы 2-3 примера из личной практики). Поэтому они тоже здесь отсутствуют, переписывать же единичные примеры из каких-то сторонних источников, смысла вообще не вижу.
Надеюсь, ваше плавание в дифференциальных уравнениях было успешным!
Решения и ответы:
Пример
2: Решение: Выразим
из первого уравнения системы
:
Дифференцируем
по
:
.
Подставим
и
во
второе уравнение системы:
Характеристическое
уравнение:
–
кратные действительные корни,
поэтому
.
Дифференцируем
по
:
Подставим
и
в
уравнение (*):
Общее
решение системы:
Найдем
частное решение, соответствующее
заданным начальным условиям:
Ответ: частное
решение:
Пример
4: Решение: Выразим
их
второго уравнения системы:
Дифференцируем
по
:
.
Подставим
и
в
первое уравнение:
Найдем
общее решение соответствующего
однородного уравнения:
Характеристическое
уравнение:
–
сопряженные комплексные корни, поэтому
общее решение:
Очевидно,
что частное решение неоднородного
уравнения:
Таким
образом:
.
Дифференцируем
по
:
Подставим
и
в
уравнение (*):
Общее
решение системы:
Найдем
частное решение, соответствующее
заданным начальным условиям:
Ответ: частное
решение:
Числовые ряды:
