- •1.Основные гипотезы курса. Понятие о расчетной схеме. Классификация расчетной схемы сооружений.
- •2.Кинематический анализ сооружений. Понятие о степени свободы. Способы образования простейших геометрически неизменимых сил.
- •3.Многопролетная статически определимая балка. Их преимущества и недостатки. Порядок вычисления всф в шарнирно- консольных балках.
- •4.Понятие о линии влияния силовых факторов. Линии влияния реакции и всф в однопролетных свободно опертых балках.
- •5. Линии влияния при узловой передачи нагрузки.
- •6. Определение усилий по линиям влияния.
- •7. Построение линий влияния усилий для многопролетных статически определимых балок (шарнирно-консольных балок)
- •8. Не выгоднейшее загружение треугольной линии влияния системой сосредоточенных сил. Аналитический метод определения критического груза.
- •9. Понятие о фермах. Классификация ферм. Кинематический анализ простейших ферм.
- •10. Аналитические способы определения усилий в элементах фермы: способ вырезания узлов, способ проекции, способ моментной точки (примеры).
- •11. Диаграмма Максвелла- Кремоны (пример)
- •12. Построение линий влияния усилий для элементов ферм.
- •1 . Способ моментной точки.
- •2. Способ проекций
- •3. Способ вырезания узлов.
- •13.Понятие о шпренгельной ферме. Классификация шпренгельных ферм и порядок определения усилий в элементах таких ферм. Линии влияния усилий.
- •14. Комбинированные системы. Висячие системы. Расчет цепи, усиленной балкой жесткости. Понятие о вантовых системах.
- •15. Понятие о трехшарнирных арках. Классификация арок. Определение реакции опор.
- •16. Вычисление всф в трехшарнирных арках. Рациональное очертание оси трехшарнирной арки.
- •17. Понятие о построении линии влияния усилий в трехшарнирных арках способом наложения и способом нулевых точек .
- •18. Работа внешних сил. Потенциальная энергия. Принцип возможных перемещений (без вывода)
- •19. Теорема о взаимности работ (теорема Бетти)
- •2 0. Теоремы: о взаимности перемещений, о взаимности реакций.
- •21. Определение перемещений в стержневых системах от температурного взаимодействия (с выводом)
- •22. Определение перемещений в стержневых системах от внешних нагрузок (по Верещагину, Симпсону, интегралу Мора)
- •29!!!!!!!!!!!!!!!!!!!!!!6.2.3. Теорема о взаимности реакций
- •6.1. Характеристика статически неопределимых систем и некоторые их свойства
- •6.1.2. Степень статической неопределимости
- •6.1.3. Методы расчёта статически неопределимых систем
- •1. Сущность метода перемещений
- •12.1.6. Построение эпюр поперечных и продольных сил
18. Работа внешних сил. Потенциальная энергия. Принцип возможных перемещений (без вывода)
Если нагруженное тело находится в равновесии, то внутренние силы равны по значению внешним силам и противоположны им по направлению. Очевидно, что они препятствуют развитию деформации. Работа внутренних сил (U), с учетом их направления по отношению к деформации, всегда является отрицательной.
Работа внешних сил равна взятой с обратным знаком работе внутренних сил:
.
Пусть
элемент стержня длиной
испытывает
растяжение (рис. 15.3, а).
Действие
отброшенных частей стержня на
рассматриваемый элемент заменим
продольными силами N. Эти усилия показаны
на рисунке штриховыми линиями. По
отношению к элементу они являются как
бы внешними. Вызываемое ими удлинение
элемента равно:
.
Действие
рассматриваемого элемента на отброшенные
части показано на рисунке сплошными
линиями. Элементарная работа внутренних
продольных сил, постепенно увеличивающихся,
и противодействующих развитию удлинения,
согласно теореме Клапейрона, выразится
формулой:
.
Согласно закону сохранения энергии, работа внешних сил не исчезает, а переходит в потенциальную энергию (V), накапливаемую в упругом теле при его деформировании.
Следовательно, потенциальная энергия деформации численно равна работе внешних сил при нагружении тела (или работе внутренних сил, совершаемой ими в процессе разгружения).
Таким образом, потенциальная энергия деформации стержня, испытывающего, например, растяжение, кручение и прямой поперечный изгиб, равна:
.
Как видно из этой формулы, потенциальная энергия деформации всегда положительна, поскольку она является квадратичной функцией обобщенных сил (или обобщенных перемещений, так как последние линейно связаны с обобщенными силами). Отсюда следует, что потенциальная энергия, накопленная в результате действия группы сил, не равна сумме потенциальных энергий, накопленных от действия каждой нагрузки в отдельности. То есть принцип независимости действия сил при вычислении потенциальной энергии деформации не применим.
Возможными перемещениями называют перемещения, вызываемые, как правило, виртуальными, задаваемыми для расчёта факторами.
Принцип возможных перемещений сформулирован для абсолютно твердых тел Лагранжем в 1788 г. и впервые применен к деформируемым телам Пуассоном в 1833 г.
Формулировка
принципа возможных перемещений:
если система находится в равновесии
под действием приложенной к ней нагрузки,
то сумма работ внешних и внутренних сил
на всяком бесконечно малом возможном
перемещении точек системы, допускаемых
связями, равна нулю.
,
где
–
возможная работа внешних, а
–
возможная работа внутренних сил.
В процессе совершения системой возможного перемещения значение и направление внешних и внутренних сил считаются неизменными. Поэтому возможная работа внешних и внутренних сил определяется простым произведением соответствующих сил и перемещений. Учитывая принятое в сопротивлении материалов допущение о малости деформаций и линейную зависимость деформаций от нагрузок, в качестве возможных перемещений можно принимать и конечные упругие перемещения, вызванные любым видом внешней нагрузки и происходящие без нарушения связей.
