
- •1) Основные термодинамические функции δg, δh, δs
- •2) Закон Гесса, следствия
- •Следствия из закона Гесса
- •3) Направленность химических процессов
- •4) Влияние концентрации на скорость химической реакции (з. Действующих масс)
- •5) Влияние давления на скорость химической реакции
- •6) Влияние температуры на скорость химической реакции
- •7) Энергия активации химической реакции. Расчет энергии.
- •Методы расчёта
- •8) Влияние каталитической обстановки на скорость химической реакции.
- •9) Влияние дисперсности вещества на скорость химической реакции.
- •10) Механо-химические реакции.
- •11) Химическое равновесие. Константа химического равновесия.
- •12) Применение основных положений химической кинетики к гетерогенным системам.
- •13) Факторы, влияющие на смещение химического равновесия:
- •14) Электронное моделирование строения атома.
- •15) Периодический закон и электронное строение атома.
- •16) Типы химических связей
- •17) Ковалентная связь
- •18) Расчет числа возможных ковалентных связей
- •19) Ионная связь. Переход полярной связи в ионную
- •20) Донорно-акцепторная связь
- •21) Химическая связь и прочность твердого тела
- •22) Химическая коррозия металлов.
- •23) Гальвани́ческий элеме́нт. Аккумулятор.
- •24) Электро́дный потенциа́л. Уравнение Нернста
- •25) Окислительно-восстановительные реакции
- •26) Ионное произведение воды. Водоро́дный показа́тель.
- •27) Электролитическая диссоциация. Изотонический коэффициент, его связь со степенью электролитической диссоциации.
- •28) Закон Рауля
- •29) Следствия з. Рауля
- •30) Гидролиз солей
- •31) Осмос. Осмотическое давление. Обратный осмос.
- •32) Классификация дисперсных систем и растворов.
- •33) Гомо- и гетерогенные системы. Диспе́рсные систе́мы и растворы.
- •34) Химическая коррозия металлов.
- •35) Электрохимическая коррозия металлов
- •36) Методы борьбы с химической коррозией металлов.
- •37) Пассивное состояние поверхности металла
- •38) Методы борьбы с электрохимической коррозией металлов.
- •39) Электролиз.
- •40) Диспе́рсные систе́мы, межфазная граница, свойства.
1) Основные термодинамические функции δg, δh, δs
— в термодинамике некая функция, зависящая от нескольких независимых параметров, которые однозначно определяют состояние термодинамической системы. Значение термодинамической функции состояния зависит только от состояния термодинамической системы и не зависит от того, как система пришла в это состояние. Частным случаем функций состояний являются термодинамические потенциалы.
Энергия Гиббса G – функция состояния термодинамической системы, равная разности между энтальпией и произведением температуры на энтропию:
G = H - TS = U - TS + PV = A + PV
Убыль
энергии Гиббса в равновесном процессе,
протекающем при P,T = const, равна
максимальной полезной работе, произведенной
системой. Величина
G
является критерием
направленности самопроизвольного
процесса
в закрытой системе при P,T = const: при
G < 0
процесс идет в прямом направлении, при
G > 0
- в обратном, при
G = 0
реализуется состояние равновесия.
Энтальпия H [энергия. моль-1 (Дж. моль-1, кал. моль-1)] – функция состояния термодинамической системы, равная сумме внутренней энергии и произведения объема на давление: H = U + PV.
Энтропия
S
[энергия.
моль-1
К-1
(Дж.
моль-1К-1,
кал.
моль-1К-1 = э.е.)]
– функция состояния термодинамической
системы, определяемая тем, что ее
дифференциал (dS)
при элементарном равновесном (обратимом)
процессе равен отношению бесконечно
малого количества теплоты (
Q),
сообщенной системе, к температуре (T):
dS =
Q/T.
2) Закон Гесса, следствия
— основной закон термохимии, который формулируется следующим образом:
Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:
Следствия из закона Гесса
Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье-Лапласа).
Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):
Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):
Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.
3) Направленность химических процессов
Движущие силы химической реакции обусловлены ее стремлением к уменьшению запаса энергии, т.е. к уменьшению энтальпии при p = const и ее стремлением к увеличению энтропии.
В ходе химической реакции участвующие частицы перегруппировываются таким образом, чтобы уменьшалась энергия системы; это проявляется в их сближении и взаимодействии. Вместе с тем реагирующие частицы обладают отчетливой тенденцией к беспорядочному расположению. Эти два фактора обусловливают химическую обратимость реакций; преобладающее направление реакции определяется значением и знаком величин ΔH и ΔS.
Критерием самопроизвольного протекания химических реакций является отрицательное значение энергии Гиббса: ΔG < 0