- •1. Основные понятия и определения в электротехнике. Электрический ток, потенциал, напряжение, эдс. Электрические цепи. Виды электротехнических устройств по совокупности и принципу действия.
- •2. Электрические цепи. Линейные и нелинейные цепи. Активные и пассивные цепи, участки и элементы.
- •3. Электрическая схема. Схема замещения. Пассивные и активные элементы схемы замещения.
- •4. Электрическая схема. Схемы замещения реальных источников электрической энергии с помощью активных элементов схемы замещения. Идеальные источники эдс, тока.
- •5. Разветвленные и неразветвленные схемы. Ветвь, узел, контур. Режимы работы электрических цепей.
- •Режимы работы электрических цепей
- •6. Основные режимы работы электрических цепей. Законы Ома, Кирхгофа. Режимы работы электрических цепей
- •Основные законы электрических цепей
- •Основные понятия и определения для электрической цепи
- •Закон Ома для участка цепи
- •Закон Ома для всей цепи
- •Первый закон Кирхгофа
- •Второй закон Кирхгофа
- •Электрическая цепь с последовательным соединением элементов
- •Электрическая цепь с параллельным соединением элементов
- •Электрическая цепь со смешанным соединением элементов
- •8. Эквивалентные преобразования схем. Преобразование треугольника сопротивлений в эквивалентную звезду.
- •Соединение элементов электрической цепи по схемам «звезда» и «треугольник»
- •9. Эквивалентные преобразования схем. Преобразование звезды сопротивлений в эквивалентный треугольник.
- •Соединение элементов электрической цепи по схемам «звезда» и «треугольник»
- •10. Расчет электрических цепей постоянного тока с одним источником методом свертывания. Расчет электрических цепей постоянного тока с одним источником методом свертывания
- •12. Анализ сложных электрических цепей с несколькими источниками энергии. Метод непосредственного применения законов Кирхгофа. Метод непосредственного применения законов Кирхгофа
- •13. Анализ сложных электрических цепей с несколькими источниками энергии. Метод контурных токов. Метод контурных токов
- •Порядок расчета
- •Рекомендации
- •14. Анализ сложных электрических цепей с несколькими источниками энергии. Метод узловых потенциалов. Метод узловых потенциалов
- •Замечание
- •15. Анализ сложных электрических цепей с несколькими источниками энергии. Метод двух узлов. Метод двух узлов
- •16. Анализ сложных электрических цепей с несколькими источниками энергии. Метод эквивалентного генератора. Метод эквивалентного генератора
16. Анализ сложных электрических цепей с несколькими источниками энергии. Метод эквивалентного генератора. Метод эквивалентного генератора
Этот метод используется тогда, когда надо определить ток только в одной ветви сложной схемы. Чтобы разобраться с методом эквивалентного генератора, ознакомимся сначала с понятием "двухполюсник". Часть электрической цепи с двумя выделенными зажимами называется двухполюсником. Двухполюсники, содержащие источники энергии, называются активными. На рис. 4.5 показано условное обозначение активного двухполюсника. Двухполюсники, не содержащие источников, называются пассивными. На эквивалентной схеме пассивный двухполюсник может быть заменен одним элементом - внутренним или входным сопротивлением пассивного двухполюсника Rвх. На рис. 4.6 условно изображен пассивный двухполюсник и его эквивалентная схема.
Рис. 4.5 Рис. 4.6
Входное сопротивление пассивного двухполюсника можно измерить. Если известна схема пассивного двухполюсника, входное сопротивление его можно определить, свернув схему относительно заданных зажимов. Дана электрическая цепь. Необходимо определить ток I1 в ветви с сопротивлением R1 в этой цепи. Выделим эту ветвь, а оставшуюся часть схемы заменим активным двухполюсником (рис. 4.7). Согласно теореме об активном двухполюснике, любой активный двухполюсник можно заменить эквивалентным генератором (источником напряжения) с ЭДС, равным напряжению холостого хода на зажимах этого двухполюсника и внутренним сопротивлением, равным входному сопротивлению того же двухполюсника, из схемы которого исключены все источники (рис. 4.8). Искомый ток I1 определится по формуле:
(4.10)
Рис. 4.7 Рис. 4.8
Параметры эквивалентного генератора (напряжение холостого хода и входное сопротивление) можно определить экспериментально или расчетным путем. Ниже показан способ вычисления этих параметров расчетным путем в схеме на рис. 4.2. Изобразим на рис. 4.9 схему, предназначенную для определения напряжения холостого хода. В этой схеме ветвь с сопротивлением R1 разорвана, это сопротивление удалено из схемы. На разомкнутых зажимах появляется напряжение холостого хода. Для определения этого напряжения составим уравнение для первого контура по второму закону Кирхгофа
,
откуда находим
,
(4.11)
где
определяется
из уравнения, составленного по второму
закону Кирхгофа для второго контура
.
(4.12)
Так как первая ветвь разорвана, ЭДС Е1 не создает ток. Падение напряжения на сопротивлении Rвн1 отсутствует. На рис. 4.10 изображена схема, предназначенная для определения входного сопротивления.
.
Рис. 4.9 Рис. 4.10
Из схемы на рис. 4.9 удалены все источники (Е1 и Е2), т.е. эти ЭДС мысленно закорочены. Входное сопротивление Rвх определяют, свертывая схему относительно зажимов 1-1'
.
(4.13)
Для определения параметров эквивалентного генератора экспериментальным путем необходимо выполнить опыты холостого хода и короткого замыкания. При проведении опыта холостого хода от активного двухполюсника отключают сопротивление R1, ток I1 в котором необходимо определить. К зажимам двухполюсника 1-1' подключают вольтметр и измеряют напряжение холостого хода Uxx (рис. 4.11). При выполнении опыта короткого замыкания соединяют проводником зажимы 1-1' активного двухполюсника и измеряют амперметром ток короткого замыкания I1кз (рис. 4.12).
Рис. 4.11 Рис. 4.12
откуда
(4.14)
