- •8.Периодические закон и система химических элементов д.И. Менднлеева. Энергия ионизации сродство к электрону и электроотрицательности.
- •9.Определение свойств элементов по положению в периодической системе. Окислительно-востановительные свойства веществ.
- •10.Общие представления о химической связи. Химическая связь и валентность элементов. Основные виды и характеристики химической связи.
- •11.Метод валентных связей и молекулярных орбиталей. Пространственная конфигурация молекул.
- •12.Понятие о п и q-связях. Понятие о возбужденном состоянии атома.
- •13.Взаимодействие молекул полярных и неполярных. Атомы и ионы как комплексообразователи.
- •14.Соединение комплексных анионов, катионов и нейтральных кс. Понятие о теории кс. Заряд и координационное число кс.
- •15.Физическая сущность энергетических эффектов химических реакций. Внутренняя энергия и энтальпия. Термохимические законы. Закон Гесса.
- •16.Эльтапия образования химических соединений. Изменение энтальпии в различных процессах.
- •17.Термохимические расчеты. Понятие об энтропии.
- •18.Энергия Гиббса и ее значение. Направленность химических процессов.
- •19.Скорость химических реакций и методы ее регулирования. Скорость гомогенных и гетерогенных реакций.
- •21. Химическая кинетика. Зависимость скорости реакции от различных факторов.
- •22.Цепные реакции. Колебательные реакции. Каталитические системы. Понятие об ингибиторах и катализаторах.
- •23.Химическое и фазовое равновесие. Константа химического равновесия.
- •28.Особенности воды как растворителя. Отклонение от законов Рауля и Вант-Гоффа для электролитов.
- •31.Образование гетерогенных дисперсных систем. Классификация дисперсных и коллоидных систем.
- •32.Золи и гели. Мицеллы и их строение. Получение коллоидных растворов.
- •33. Устойчивость коллоидных систем. Разрушение коллоидных систем. Коллоиды в природе и быту.
- •34.Окислительно-востановительные процессы. Гетерогенные ов-процессы.
- •36.Хит. Гальваническое, концентрационные и топливные элементы.
- •37.Электроды. Потенциал электродов.
- •38. Электролиз. Последовательность разрядки ионов. Вторичные процессы при электролизе. Поляризация.
- •39.Электролиз. Законы Фарадея. Выходы по току, по веществу, по энергии.
- •40. Электролитическое получение и рафинирование металлов.
- •41. Основные виды коррозии. Химическая коррозия. Коррозия металлов под действием природных вод и блуждающих токов.
- •42. Методы защиты металлов от коррозии. Ингибиторы и ингибиторная защита.
- •43. Полимеры и методы их получения. Полимеризация и поликонденсация. Строение и свойство полимеров.
- •44. Получение и свойства олигомеров. Применение полимеров и олигомером.
- •45. Вещество и его чистота. Аналитический сигнал и его виды
- •46. Физический, физико-химический и химический анализы. Электрохимические методы анализа.
- •47.Общая характеристика органических соединений. Основы теории химического строения органических соединений.
- •48. Электронные представления в органической химии. Принципы классификации органических соединений.
- •49. Общие физические и химические свойства металлов и сплавов. Диаграммы плавкости. Изоляторы, проводники, полупроводники. Их свойства и применение.
- •50. Вода в природе. Физические и химические свойства воды. Основы водоподготовки. Жесткость природных вод и методы ее устранения.
- •51.Электрометаллургия. Гидроэлектрометаллургия. Гальваностегия. Гальвонопластегия.
- •52. Гальванические цеха. Оборудование. Принципы работы.
- •53. Титрование. Методы и способы титрования.
- •54. Электрохимический ряд активности металлов.
21. Химическая кинетика. Зависимость скорости реакции от различных факторов.
ХИМИЧЕСКАЯ КИНЕТИКА – (от греч. кинетикос – движущий) наука о механизмах химических реакций и закономерностях их протекания во времени. Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход. Влияние концентрации. Зависимость скорости химических реакций от концентрации определяется законом действия масс. Влияние температуры. С повышением температуры скорость реакции возрастает, что связано с увеличением константы скорости реакции. Согласно правилу Вант-Гоффа повышение температуры на 10 0 С увеличивает скорость реакции в 2-4 раза. Влияние катализатора. Катализатор – вещество, которое резко изменяет скорость реакции. При внесении катализатора реакция проходит через несколько промежуточных стадий, требующих меньшей энергии активации, чем прямая реакция без катализатора, что приводит к колоссальному возрастанию скорости реакции.
22.Цепные реакции. Колебательные реакции. Каталитические системы. Понятие об ингибиторах и катализаторах.
Цепная реакция — химическая или ядерная реакция, в которой появление активной частицы (свободного радикала или атома в химическом, нейтрона в ядерном процессе) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R•) с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой — происходит цепная реакция.
К цепным реакциям в химии относятся процессы окисления (горение, взрыв), крекинга, полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности. КОЛЕБАТЕЛЬНЫЕ РЕАКЦИИ – класс окислительно-восстановительных периодических реакций. Механизм реакции напоминает работу устройства со сдерживающей защелкой. Впервые такие реакции были обнаружены в 1951 московским химиком Б.П.Белоусовым. Колебательные реакции протекают с участием катализатора (впервые это было обнаружено в процессе реакции при наличии ионов церия) и состоят, как правило, из двух стадий.
Необходимые условия, обеспечивающие возможность протекания таких реакций:
а) скорость первой стадии должна заметно превышать скорость второй стадии;
б) на второй стадии должно возникать соединение, тормозящее протекание первой стадии (его называют ингибитором). Каталитические реакции (циклические) — К. реакциями называются многочисленные химические превращения, вызываемые в различных химических системах веществами, которые, не подвергаясь сами каким-либо постоянным изменениям, одним своим присутствием обусловливают перераспределение атомов в системах, с которыми они приведены в соприкосновение. Вещества, вызывающие подобное действие и не претерпевающие при этом, по-видимому, изменений, получили название К. Берцелиус, первый отличивший подобные реакции, предполагал, что эти вещества обладают особенным свойством или силой, которую он назвал К., т. е. силой, способной вызывать химические превращения. Он приписывал ей свойства, сходные со свойствами электрических сил. Проще, однако, смотреть на К. реакции как на простое проявление той силы, которая называется химическим сродством. Достаточно предположить, что в каждой химической системе существует стремление претерпевать превращения в известном, определенном направлении, иначе говоря, что в них существуют направления наименьшего сопротивления известному химическому превращению; так, у водорода с кислородом можно предположить стремление к соединению, у тростникового сахара с водою — к инверсии (см.), у бертолетовой соли — к выделению кислорода и т. д. Ингибитор (лат. inhibere — задерживать) — вещество, замедляющее или предотвращающее течение какой-либо химической реакции: коррозии металла, старенияполимеров, окисления топлива и смазочных масел, пищевых жиров и др. Действие ингибиторов характерно для каталитических и цепных реакций, протекающих с участием активных центров или частиц. Торможение или предотвращение реакции обусловлено тем, что ингибитор блокирует активные центры катализатора или реагирует с активными частицами с образованием малоактивных радикалов. Ингибитор вводится в систему в намного меньшей концентрации, чем концентрация реагентов. Катализатор — это вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) повторяется. Катализаторы - это вещества, изменяющие скорость химической реакцции или вызывающие ее, но не входящие в состав продуктов. Виды катализаторов
Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный – образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.
