- •8.Периодические закон и система химических элементов д.И. Менднлеева. Энергия ионизации сродство к электрону и электроотрицательности.
- •9.Определение свойств элементов по положению в периодической системе. Окислительно-востановительные свойства веществ.
- •10.Общие представления о химической связи. Химическая связь и валентность элементов. Основные виды и характеристики химической связи.
- •11.Метод валентных связей и молекулярных орбиталей. Пространственная конфигурация молекул.
- •12.Понятие о п и q-связях. Понятие о возбужденном состоянии атома.
- •13.Взаимодействие молекул полярных и неполярных. Атомы и ионы как комплексообразователи.
- •14.Соединение комплексных анионов, катионов и нейтральных кс. Понятие о теории кс. Заряд и координационное число кс.
- •15.Физическая сущность энергетических эффектов химических реакций. Внутренняя энергия и энтальпия. Термохимические законы. Закон Гесса.
- •16.Эльтапия образования химических соединений. Изменение энтальпии в различных процессах.
- •17.Термохимические расчеты. Понятие об энтропии.
- •18.Энергия Гиббса и ее значение. Направленность химических процессов.
- •19.Скорость химических реакций и методы ее регулирования. Скорость гомогенных и гетерогенных реакций.
- •21. Химическая кинетика. Зависимость скорости реакции от различных факторов.
- •22.Цепные реакции. Колебательные реакции. Каталитические системы. Понятие об ингибиторах и катализаторах.
- •23.Химическое и фазовое равновесие. Константа химического равновесия.
- •28.Особенности воды как растворителя. Отклонение от законов Рауля и Вант-Гоффа для электролитов.
- •31.Образование гетерогенных дисперсных систем. Классификация дисперсных и коллоидных систем.
- •32.Золи и гели. Мицеллы и их строение. Получение коллоидных растворов.
- •33. Устойчивость коллоидных систем. Разрушение коллоидных систем. Коллоиды в природе и быту.
- •34.Окислительно-востановительные процессы. Гетерогенные ов-процессы.
- •36.Хит. Гальваническое, концентрационные и топливные элементы.
- •37.Электроды. Потенциал электродов.
- •38. Электролиз. Последовательность разрядки ионов. Вторичные процессы при электролизе. Поляризация.
- •39.Электролиз. Законы Фарадея. Выходы по току, по веществу, по энергии.
- •40. Электролитическое получение и рафинирование металлов.
- •41. Основные виды коррозии. Химическая коррозия. Коррозия металлов под действием природных вод и блуждающих токов.
- •42. Методы защиты металлов от коррозии. Ингибиторы и ингибиторная защита.
- •43. Полимеры и методы их получения. Полимеризация и поликонденсация. Строение и свойство полимеров.
- •44. Получение и свойства олигомеров. Применение полимеров и олигомером.
- •45. Вещество и его чистота. Аналитический сигнал и его виды
- •46. Физический, физико-химический и химический анализы. Электрохимические методы анализа.
- •47.Общая характеристика органических соединений. Основы теории химического строения органических соединений.
- •48. Электронные представления в органической химии. Принципы классификации органических соединений.
- •49. Общие физические и химические свойства металлов и сплавов. Диаграммы плавкости. Изоляторы, проводники, полупроводники. Их свойства и применение.
- •50. Вода в природе. Физические и химические свойства воды. Основы водоподготовки. Жесткость природных вод и методы ее устранения.
- •51.Электрометаллургия. Гидроэлектрометаллургия. Гальваностегия. Гальвонопластегия.
- •52. Гальванические цеха. Оборудование. Принципы работы.
- •53. Титрование. Методы и способы титрования.
- •54. Электрохимический ряд активности металлов.
17.Термохимические расчеты. Понятие об энтропии.
Для термохимических расчетов необходимо, чтобы все теплоты реакций были отнесены к одинаковым условиям. Иначе их значения будут не сопоставимы. Это обстоятельство обусловлено тем, что теплота химической реакции зависит от температуры и в меньшей степени от давления. Обычно теплоты химических реакций приводят к стандартным условиям. Для индивидуальных твердых веществ и жидкостей в качестве стандартного принимают состояние их при 1 атм и данной температуре. Для индивидуальных газов в качестве стандартного принимают их состояние в виде гипотетического идеального газа, летучесть которого равна единице при данной температуре. Свойства индивидуальных газов при 1 атм не слишком отличаются от свойств их в стандартных условиях; в расчетах, не требующих высокой точности, этим различием обычно пренебрегают. Следует обращать внимание на то, что для газовой химической реакции, проводимой в стандартных условиях, не общее давление равно 1 атм, а парциальное давление каждого из газообразных компонентов реакции. Понятие энтропии системы вводится в форме утверждения, что изменение энтропии равно количеству тепла, поглощенного при обратимом процессе , деленному на абсолютную температуру.
18.Энергия Гиббса и ее значение. Направленность химических процессов.
Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида:
Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.) Понятие энергии Гиббса широко используется в термодинамике и химии.
Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста её энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)
19.Скорость химических реакций и методы ее регулирования. Скорость гомогенных и гетерогенных реакций.
Скорость химической реакции прямо пропорциональна произведению
концентраций реагирующих веществ. Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ. Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит. Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы. Гетерогенной — система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства системы изменяются скачком. Скорость гетерогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице поверхности фазы. 20. Скорость гетерогенных реакций. Закон действия масс. Костанта скорости.
Гетерогенные реакции, хим. реакции с участием веществ, находящихся в различных фазах и составляющих в совокупности гетерогенную систему. Типичные гетерогенные реакции: термическое разложение солей с образованием газообразных и твердых продуктов (например, СаСО3 -> СаО + СО2), восстановление оксидов металлов водородом илиуглеродом (например, РbО + С -> Рb + СО), растворение металлов в кислотах (например, Zn + H2SO4 -> ZnSO4 + Н2), взаимодействие твердых реагентов (Аl2О3 + NiO -> NiAl2O4). В особый класс выделяют гетерогенно-каталитические реакции, протекающие на поверхности катализатора, при этом реагенты и продукты могут и не находиться в разных фазах. Например, при реакции N2 + + ЗН2 -> 2NH3, протекающей на поверхности железного катализатора, реагенты и продукт реакции находятся в газовой фазе и образуют гомогенную систему.
Скорость гетерогенных химических реакций определяется количеством вещества, прореагировавшего на единице поверхности в единицу времени. В общем случае степень химического превращения при гетерогенном каталитическом процессе зависит не только от кинетической характеристики реакции, но и от процессов диффузии реагирующих веществ из потока среды, протекающей между зернами катализатора, к внешней поверхности катализатора и в его поры и обратной диффузии продуктов реакции.
Закон действующих масс в кинетической форме (основное уравнение кинетики) гласит, что скорость элементарной химической реакции пропорциональна произведениюконцентраций реагентов в степенях, равных стехиометрическим коэффициентам в уравнении реакции. КОНСТАНТА СКОРОСТИ химической реакции - ее основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных реакций константа скорости имеет размерность с-1, для биомолекулярных - л/моль.с
