- •1. Задачи сопротивления материалов. Определение бруса, оболочки, пластины, массива.
- •2. Основные и дополнительные гипотезы о деформированном твердом теле.
- •3 .Метод сечений, внутренние силовые факторы.
- •4. Понятие о механическом напряжении. Принцип Сен-Венана.
- •5. Растяжение (сжатие). Деформации при растяжении (сжатии).
- •6. Определение внутренних усилий, нормальных напряжений, осевых перемещений при растяжении (сжатии) в различных случаях загружения стержня. Построение эпюр
- •7.Коэффициент Пуассона. Закон Гука.
- •8. Испытания материалов на растяжение (сжатие). Диаграмма растяжения углеродистой стали.
- •9. Понятие о допускаемом напряжении. Условие прочности. Коэффициент запаса прочности.
- •10. Сдвиг (срез). Закон Гука при сдвиге. Смятие.
- •11. Напряжения, действующие по наклонным площадкам при линейном (одноосном) напряженном состоянии. Максимальные нормальные и касательные напряжения.
- •12. Двухосное напряжённое состояние элемента материала
- •13. Плоское напряжённое состояние элемента материала.
- •14. Геометрические характеристики плоских сечений
- •15. Осевой и центробежный момент инерции сечения
- •16. Главные оси и главные моменты инерции. Радиус инерции
- •17. Кручение. Напряжения, деформации, закон Гука при кручении
- •18. Основные определения тмм: механизм, звено, стойка, кинематическая пара, элемент звена
- •19. Кинематические пары. Классификация кинематических пар, примеры, изображение на кинематических схемах.
- •20. Высшие и низшие кинематические пары. Виды замыкания кинематических пар
- •21. Кинематические цепи. Входное и выходное звенья механизма. Ведущее и ведомое звенья.
- •22. Степень подвижности механизма. Формула Сомова-Малышева для кинематической цепи общего вида.
- •23. Степень подвижности механизма. Формула Чебышева для плоского механизма.
- •25. Зубчатые механизмы. Опpеделение аксоиды, центpоиды. Виды зубчатых механизмов
- •26 Пеpедаточное отношение, пеpедаточное число. Опpеделение пеpедаточного отношения для последовательного ряда передач .
- •27. Планетаpные механизмы. Опpеделение пеpедаточного отношения аналитически методом Виллиса.
- •28 Основы конструирования. Виды изделий. Классификация деталей машин.
- •29 Основные этапы проектирования. Дать характеристику каждому этапу.
- •30 Определение понятий: машина, механизм, деталь, сборочная единица, узел, агрегат.
- •31 Основы конструирования. Пути расчёта деталей машин – критерии работоспособности. Определения проектировочного и проверочного расчётов.
- •32 Характеристики статической и усталостной прочности
- •Конические зубчатые передачи: силы в зацеплении, критерии работоспособности, особенности расчёта по контактным напряжениям.
- •42.Червячные передачи: достоинства и недостатки, геометрические, кинематические параметры.
- •43.Червячные передачи: достоинства и недостатки, силы в зацеплении, критерии работоспособности и расчёта.
- •44.Червячные передачи: расчёт на прочность, материалы и допускаемые напряжения. Расчет на прочность червячной передачи.
- •45.Машиностроительные материалы: виды, обозначения, области применения.
- •46.Ремённые передачи: преимущества и недостатки, геометрические и кинематические параметры.
- •47.Скольжение в ремённой передаче. Напряжения в ремне, долговечность ремня, к.П.Д.
- •48.Клиноремённая передача. Достоинства и недостатки. Типы ремней. Основы расчёта.
8. Испытания материалов на растяжение (сжатие). Диаграмма растяжения углеродистой стали.
Испытание материалов на растяжение(сжатие) осуществляется с целью определения мех. Хорактеристик свойств метала: упругости, пластичности, прочности и твердости.Мех. свойства материалов опредиляются в лабораториях на разрывных машинахпо образцам изготовленных из исследуемого материала.Графическое представление зависимости между действ. Силой F и удинением ∆l называется диаграммой растяжения или сжатия образца ∆l=f(F).
9. Понятие о допускаемом напряжении. Условие прочности. Коэффициент запаса прочности.
Напряжение пропорционально внутреннему усилию и обратно пропорционально площади поперечного сечения.
Допустимым (допускаемым) напряжением называется величина, ограничивающая верхний предел рабочих напряжений возникающих под действием заданных нагрузок.
Когда говорят о напряжениях, то имеют в виду напряжение в точке сечения. Учитывая принятое в сопротивлении материалов допущение, что материал детали однороден и изотропен, получаем, что напряжения в каждой точке сечения одинаковы.
В сечении стержня выделена маленькая площадка ∆A, на которой действует внутренняя сила ∆R. Тогда среднее напряжение на площадке равно Рср = ∆R/∆A.Уменьшая размеры площадки до уровня точки, получим
Р = lim ∆R/∆A = dR/dA – напряжение в точке сечения. ∆A→0
Полное напряжение Р можно разложить на две составляющие:
1)составляющую, нормальную к плоскости сечения σ - нормальное напряжение;
2)составляющую, лежащую в плоскости сечения τ - касательное или тангенциальное напряжение.
Размерность напряжений.
Напряжения
измеряются в МПа. 1МПа=
Па=
Н/м²=
Н/мм²
1МПа=1Н/мм²
Очевидно, что реальные (расчетные) напряжения в конструкции не могут расти до бесконечности, они должны быть ограничены.
Условия прочности конструкций и их элементов В сопротивлении материалов основным критерием надежности конструкции является ее прочность. Условия прочности в общем виде Прочными называют конструкции и составляющие их элементы, в которых максимальныенапряжения не превышают допустимых значений. рмах≤[р] Здесь рmax – максимальные значения полного напряжения в элементах конструкции, [p] – величина допустимых значений напряжений для материала элементов. К сожалению, довольно часто, задача рассчитать величину полных напряжений p является сложновыполнимой, поэтому для оценки прочности используют значения нормальных σ и касательных τ напряжений, которые определяются сравнительно просто. σмах≤[σ] τ мах≤[ τ], где σmax и τmax – максимальные нормальные и касательные напряжения соответственно, [σ] и [τ] – допустимые нормальные и касательные напряжения для материала элемента. |
Коэффициент запаса прочности - это отношение некоторого предельного напряжения к максимальному напряжению, возникаемому в конструкции.
Максимальное напряжение в конструкции не должно превышать допускаемого напряжения для данного материала определенного с учетом коэффициента запаса для заданных условий работы.
Коэффициент запаса - число большее единицы.
