- •1. Задачи сопротивления материалов. Определение бруса, оболочки, пластины, массива.
- •2. Основные и дополнительные гипотезы о деформированном твердом теле.
- •3 .Метод сечений, внутренние силовые факторы.
- •4. Понятие о механическом напряжении. Принцип Сен-Венана.
- •5. Растяжение (сжатие). Деформации при растяжении (сжатии).
- •6. Определение внутренних усилий, нормальных напряжений, осевых перемещений при растяжении (сжатии) в различных случаях загружения стержня. Построение эпюр
- •7.Коэффициент Пуассона. Закон Гука.
- •8. Испытания материалов на растяжение (сжатие). Диаграмма растяжения углеродистой стали.
- •9. Понятие о допускаемом напряжении. Условие прочности. Коэффициент запаса прочности.
- •10. Сдвиг (срез). Закон Гука при сдвиге. Смятие.
- •11. Напряжения, действующие по наклонным площадкам при линейном (одноосном) напряженном состоянии. Максимальные нормальные и касательные напряжения.
- •12. Двухосное напряжённое состояние элемента материала
- •13. Плоское напряжённое состояние элемента материала.
- •14. Геометрические характеристики плоских сечений
- •15. Осевой и центробежный момент инерции сечения
- •16. Главные оси и главные моменты инерции. Радиус инерции
- •17. Кручение. Напряжения, деформации, закон Гука при кручении
- •18. Основные определения тмм: механизм, звено, стойка, кинематическая пара, элемент звена
- •19. Кинематические пары. Классификация кинематических пар, примеры, изображение на кинематических схемах.
- •20. Высшие и низшие кинематические пары. Виды замыкания кинематических пар
- •21. Кинематические цепи. Входное и выходное звенья механизма. Ведущее и ведомое звенья.
- •22. Степень подвижности механизма. Формула Сомова-Малышева для кинематической цепи общего вида.
- •23. Степень подвижности механизма. Формула Чебышева для плоского механизма.
- •25. Зубчатые механизмы. Опpеделение аксоиды, центpоиды. Виды зубчатых механизмов
- •26 Пеpедаточное отношение, пеpедаточное число. Опpеделение пеpедаточного отношения для последовательного ряда передач .
- •27. Планетаpные механизмы. Опpеделение пеpедаточного отношения аналитически методом Виллиса.
- •28 Основы конструирования. Виды изделий. Классификация деталей машин.
- •29 Основные этапы проектирования. Дать характеристику каждому этапу.
- •30 Определение понятий: машина, механизм, деталь, сборочная единица, узел, агрегат.
- •31 Основы конструирования. Пути расчёта деталей машин – критерии работоспособности. Определения проектировочного и проверочного расчётов.
- •32 Характеристики статической и усталостной прочности
- •Конические зубчатые передачи: силы в зацеплении, критерии работоспособности, особенности расчёта по контактным напряжениям.
- •42.Червячные передачи: достоинства и недостатки, геометрические, кинематические параметры.
- •43.Червячные передачи: достоинства и недостатки, силы в зацеплении, критерии работоспособности и расчёта.
- •44.Червячные передачи: расчёт на прочность, материалы и допускаемые напряжения. Расчет на прочность червячной передачи.
- •45.Машиностроительные материалы: виды, обозначения, области применения.
- •46.Ремённые передачи: преимущества и недостатки, геометрические и кинематические параметры.
- •47.Скольжение в ремённой передаче. Напряжения в ремне, долговечность ремня, к.П.Д.
- •48.Клиноремённая передача. Достоинства и недостатки. Типы ремней. Основы расчёта.
4. Понятие о механическом напряжении. Принцип Сен-Венана.
Механическое
напряжение — это мера внутренних
сил, возникающих в деформируемом теле,
под влиянием различных факторов.
Механическое напряжение в точке тела
определяется как отношение внутренней
силы к единице площади в данной точке
рассматриваемого сечения.
Различают две составляющие вектора
механического напряжения:Нормальное
механическое напряжение — приложено
на единичную площадку сечения, по нормали
к сечению Касательное механическое
напряжение — приложено на единичную
площадку сечения, в плоскости сечения
по касательной Совокупность напряжений,
действующих по различным площадкам,
проведенным через данную точку, называется
напряженным состоянием в точке.В Международной
системе единиц (СИ) механическое
напряжение измеряется в паскалях.
Принцип Сен-Венана: в сечениях, достаточно
удаленных от места приложения нагрузки,
напряженно-деформированное состояние
не зависит от способа приложения
нагрузки.На основании этого принципа
при расчетах распределенная нагрузка
может заменятся сосредоточенными
силами.
5. Растяжение (сжатие). Деформации при растяжении (сжатии).
Растяжением или сжатием называют вид нагружения, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор -продольная сила. Продольные силы меняются по длине бруса. При расчётах после определения величин продольных сил по сечениям строится график - эпюра продольныхсил.Условно назначают знак продольной силы Если продольная сила направлена от сечения,то брус растянут. Растяжение считают положительной деформацией. Если продольная сила направлена к сечению, то брус сжат. Сжатие считают отрицательной деформацией. Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука(1653-1703г.г.),установившего этот закон. Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению. Математически эта зависимость записывается так:σ = E ε.
Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода. Модуль упругости, ка к и напряжение, выражаются в паскалях (Па)
Большинство материалов, с которыми нам приходится сталкиваться (стали, алюминиевые и медные сплавы и др.) относятся к группе упруго-пластичных материалов. Их диаграмма растяжения выглядит, как показано на рис.1.4а. Сначала деформация растет пропорционально силе, затем резкое увеличение деформации (текучесть материала), снова сопротивление и разрыв
образца.В виде а) информация потребителю не нужна, поэтому диаграмма перестраивается в координатах σ и ε – относительная деформация.На диаграмме выделяются 3 характерных точки σпц – предел пропорциональности, σТ – предел текучести и σв - временное сопротивление или предел прочности.
