- •1. Задачи сопротивления материалов. Определение бруса, оболочки, пластины, массива.
- •2. Основные и дополнительные гипотезы о деформированном твердом теле.
- •3 .Метод сечений, внутренние силовые факторы.
- •4. Понятие о механическом напряжении. Принцип Сен-Венана.
- •5. Растяжение (сжатие). Деформации при растяжении (сжатии).
- •6. Определение внутренних усилий, нормальных напряжений, осевых перемещений при растяжении (сжатии) в различных случаях загружения стержня. Построение эпюр
- •7.Коэффициент Пуассона. Закон Гука.
- •8. Испытания материалов на растяжение (сжатие). Диаграмма растяжения углеродистой стали.
- •9. Понятие о допускаемом напряжении. Условие прочности. Коэффициент запаса прочности.
- •10. Сдвиг (срез). Закон Гука при сдвиге. Смятие.
- •11. Напряжения, действующие по наклонным площадкам при линейном (одноосном) напряженном состоянии. Максимальные нормальные и касательные напряжения.
- •12. Двухосное напряжённое состояние элемента материала
- •13. Плоское напряжённое состояние элемента материала.
- •14. Геометрические характеристики плоских сечений
- •15. Осевой и центробежный момент инерции сечения
- •16. Главные оси и главные моменты инерции. Радиус инерции
- •17. Кручение. Напряжения, деформации, закон Гука при кручении
- •18. Основные определения тмм: механизм, звено, стойка, кинематическая пара, элемент звена
- •19. Кинематические пары. Классификация кинематических пар, примеры, изображение на кинематических схемах.
- •20. Высшие и низшие кинематические пары. Виды замыкания кинематических пар
- •21. Кинематические цепи. Входное и выходное звенья механизма. Ведущее и ведомое звенья.
- •22. Степень подвижности механизма. Формула Сомова-Малышева для кинематической цепи общего вида.
- •23. Степень подвижности механизма. Формула Чебышева для плоского механизма.
- •25. Зубчатые механизмы. Опpеделение аксоиды, центpоиды. Виды зубчатых механизмов
- •26 Пеpедаточное отношение, пеpедаточное число. Опpеделение пеpедаточного отношения для последовательного ряда передач .
- •27. Планетаpные механизмы. Опpеделение пеpедаточного отношения аналитически методом Виллиса.
- •28 Основы конструирования. Виды изделий. Классификация деталей машин.
- •29 Основные этапы проектирования. Дать характеристику каждому этапу.
- •30 Определение понятий: машина, механизм, деталь, сборочная единица, узел, агрегат.
- •31 Основы конструирования. Пути расчёта деталей машин – критерии работоспособности. Определения проектировочного и проверочного расчётов.
- •32 Характеристики статической и усталостной прочности
- •Конические зубчатые передачи: силы в зацеплении, критерии работоспособности, особенности расчёта по контактным напряжениям.
- •42.Червячные передачи: достоинства и недостатки, геометрические, кинематические параметры.
- •43.Червячные передачи: достоинства и недостатки, силы в зацеплении, критерии работоспособности и расчёта.
- •44.Червячные передачи: расчёт на прочность, материалы и допускаемые напряжения. Расчет на прочность червячной передачи.
- •45.Машиностроительные материалы: виды, обозначения, области применения.
- •46.Ремённые передачи: преимущества и недостатки, геометрические и кинематические параметры.
- •47.Скольжение в ремённой передаче. Напряжения в ремне, долговечность ремня, к.П.Д.
- •48.Клиноремённая передача. Достоинства и недостатки. Типы ремней. Основы расчёта.
42.Червячные передачи: достоинства и недостатки, геометрические, кинематические параметры.
Червячные передачи применяют для передачи вращательного движения между валами, у которых угол скрещивания осей обычно составляет 0 = 90°. В большинстве случаев ведущим является червяк, т. е. короткий винт с трапецеидальной или близкой к ней резьбой. Для облегания тела червяка венец червячного колеса имеет зубья дугообразной формы, что увеличивает длину контактных линий в зоне зацепления. Червячная передача — это зубчато-винтовая передача, движение в которой осуществляется по принципу винтовой пары. Область применения червячных передач.
Червячные передачи применяют при небольших и средних мощностях, обычно не превышающих 100 кВт. Применение передач при больших мощностях неэкономично из-за сравнительно низкого к.п.д. и требует специальных мер для охлаждения передачи во избежание сильного нагрева. Червячные передачи широко применяют в подъемно-транспортных машинах, троллейбусах и особенно там, где требуется высокая кинематическая точность (делительные устройства станков, механизмы наводки и т. д.). Червячные передачи во избежание их перегрева предпочтительно использовать в приводах периодического (а не непрерывного) действия.
Достоинства червячной передачи.
1) Плавность и бесшумность работы. 2) Компактность и сравнительно небольшая масса конструкции. 3) Возможность большого редуцирования, т. е. получения больших передаточных чисел (в отдельных случаях в не силовых передачах до 1000). 4) Возможность получения самотормозящей передачи, т. е. допускающей передачу движения только от червяка к колесу. Самоторможение червячной передачи позволяет выполнить механизм без тормозного устройства, препятствующего обратному вращению колеса. 5) Высокая кинематическая точность.
Недостатки червячной передачи.
1) Сравнительно низкий к.п.д. вследствие скольжения витков червяка по зубьям колеса. 2) Значительное выделение теплоты в зоне зацепления червяка с колесом. 3) Необходимость применения для венцов червячных колес дефицитных антифрикционных материалов. 4) Повышенное изнашивание и склонность к заеданию.
Основные геометрические соотношения в червячной передаче.
Геометрические размеры червяка и колеса определяют по формулам, аналогичным формулам для зубчатых колес. В червячной передаче расчетным является осевой модуль червяка m, равный торцовому модулю червячного колеса. Значения расчетных модулей m выбирают из ряда: 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20 мм.
Конструктивные элементы червячной передачи.
В большинстве случаев червяк изготовляют как одно целое с валом, для обеспечения жесткости червяка.
