- •1. Задачи сопротивления материалов. Определение бруса, оболочки, пластины, массива.
- •2. Основные и дополнительные гипотезы о деформированном твердом теле.
- •3 .Метод сечений, внутренние силовые факторы.
- •4. Понятие о механическом напряжении. Принцип Сен-Венана.
- •5. Растяжение (сжатие). Деформации при растяжении (сжатии).
- •6. Определение внутренних усилий, нормальных напряжений, осевых перемещений при растяжении (сжатии) в различных случаях загружения стержня. Построение эпюр
- •7.Коэффициент Пуассона. Закон Гука.
- •8. Испытания материалов на растяжение (сжатие). Диаграмма растяжения углеродистой стали.
- •9. Понятие о допускаемом напряжении. Условие прочности. Коэффициент запаса прочности.
- •10. Сдвиг (срез). Закон Гука при сдвиге. Смятие.
- •11. Напряжения, действующие по наклонным площадкам при линейном (одноосном) напряженном состоянии. Максимальные нормальные и касательные напряжения.
- •12. Двухосное напряжённое состояние элемента материала
- •13. Плоское напряжённое состояние элемента материала.
- •14. Геометрические характеристики плоских сечений
- •15. Осевой и центробежный момент инерции сечения
- •16. Главные оси и главные моменты инерции. Радиус инерции
- •17. Кручение. Напряжения, деформации, закон Гука при кручении
- •18. Основные определения тмм: механизм, звено, стойка, кинематическая пара, элемент звена
- •19. Кинематические пары. Классификация кинематических пар, примеры, изображение на кинематических схемах.
- •20. Высшие и низшие кинематические пары. Виды замыкания кинематических пар
- •21. Кинематические цепи. Входное и выходное звенья механизма. Ведущее и ведомое звенья.
- •22. Степень подвижности механизма. Формула Сомова-Малышева для кинематической цепи общего вида.
- •23. Степень подвижности механизма. Формула Чебышева для плоского механизма.
- •25. Зубчатые механизмы. Опpеделение аксоиды, центpоиды. Виды зубчатых механизмов
- •26 Пеpедаточное отношение, пеpедаточное число. Опpеделение пеpедаточного отношения для последовательного ряда передач .
- •27. Планетаpные механизмы. Опpеделение пеpедаточного отношения аналитически методом Виллиса.
- •28 Основы конструирования. Виды изделий. Классификация деталей машин.
- •29 Основные этапы проектирования. Дать характеристику каждому этапу.
- •30 Определение понятий: машина, механизм, деталь, сборочная единица, узел, агрегат.
- •31 Основы конструирования. Пути расчёта деталей машин – критерии работоспособности. Определения проектировочного и проверочного расчётов.
- •32 Характеристики статической и усталостной прочности
- •Конические зубчатые передачи: силы в зацеплении, критерии работоспособности, особенности расчёта по контактным напряжениям.
- •42.Червячные передачи: достоинства и недостатки, геометрические, кинематические параметры.
- •43.Червячные передачи: достоинства и недостатки, силы в зацеплении, критерии работоспособности и расчёта.
- •44.Червячные передачи: расчёт на прочность, материалы и допускаемые напряжения. Расчет на прочность червячной передачи.
- •45.Машиностроительные материалы: виды, обозначения, области применения.
- •46.Ремённые передачи: преимущества и недостатки, геометрические и кинематические параметры.
- •47.Скольжение в ремённой передаче. Напряжения в ремне, долговечность ремня, к.П.Д.
- •48.Клиноремённая передача. Достоинства и недостатки. Типы ремней. Основы расчёта.
26 Пеpедаточное отношение, пеpедаточное число. Опpеделение пеpедаточного отношения для последовательного ряда передач .
Кривые, которыми очерчены профили зубьев, должны обеспечивать постоянство передаточного отношения. Для этого необходимо, чтобы выполнялся основной закон зацепления. Он формулируется следующим образом: для сохранения постоянства передаточного отношения необходимо и достаточно, чтобы нормаль к профилям в точке их соприкосновения всегда пересекала линию центров в одной и той же точке, называемой полюсом зацепления. Эта точка делит линию центров в отношении, равном передаточному числу.
Передаточным
отношением зубчатого механизма называется
отношение угловых скоростей w ведущего
колеса wj и
ведомого wk.
Если j –
ведущее колесо, а k –
ведомое, то
Передаточное
отношение может быть выражено через
другие параметры колес:
где Zk, Zj –
числа зубьев k и j колес
соответственно: знак «+» ставится, если
колеса вращаются в одном направлении
(внутреннее зацепление), в противном
случае – «–» (внешнее зацепление).
Передаточное отношение одноступенчатой червячной передачи при ведущем червяке (под Z следует понимать число заходов червяка) определяется по предыдущей формуле. Направление вращения ведомого звена следует определять по правилу винта и гайки.
Пеpедаточное число формально считается как отношение числа зубьев колеса к числу зубьев шестерни
27. Планетаpные механизмы. Опpеделение пеpедаточного отношения аналитически методом Виллиса.
Планетарным называется механизм, имеющий в своем составе хотя бы одно звено с подвижной геометрической осью в пространстве.
Звено, имеющее подвижную геометрическую ось в пространстве, называется сателит. Звено, на которое устанавливают ось сателитов, называется водило (Н).
Зубчатые колеса, имеющие неподвижную геометрическую ось в пространстве, называются центральными. Центральное колесо, имеющее внешние зубья, называется солнечное колесо. Центральное колесо, имеющие внутренние зубья, называется коронная шестерня (опорное колесо).
Достоинства планетарных передач: 1 имеют малые габариты и вес из-за того, что поток мощности, подводимый к центральному колесу, распределяется по к сателитам. Затем поток мощности собирается на выходном звене. На одной планетарной передаче можно поставить до 24 сателитов.2 очень высокий КПД, в среднем 0.99.
Недостатки:Если число сателитов неравно 3, то необходим специальный механизм, который бы выравнивал нагрузку между сателитами. Этот механизм утяжеляет и удорожает конструкцию.
Формула
Виллиса
выводится на основании основной теоремы
зацепления и устанавливает соотношение
между угловыми скоростями зубчатых
колес в планетарном механизме. Можно
записать выражение, которое называется
формулой Виллиса для планетарных
механизмов
28 Основы конструирования. Виды изделий. Классификация деталей машин.
Цель и конечный результат конструирования – создание рабочей документации, по которой можно без участия разработчика изготавливать, эксплуатировать, контролировать и ремонтировать изделие.
ИЗДЕЛИЕ является единицей промышленной продукции. Изделие – любой предмет или набор предметов производства, изготовленный предприятием. Под изделием понимают любую продукцию, изготовляемую по конструкторской документации. Видами изделий являются детали, комплекты, узлы, механизмы, агрегаты, машины и комплексы.
Деталь – простое изделие из однородного материала, изготовленная без применения сборочных операций (болты, винты, гайки, валы). Детали и сборочные единицы делятся на группы 1. Соединительные – резьбовые, заклёпочные, сварные и т. д. 2. Детали, передающие вращательные движения – зубчатые колёса, шкивы, звёздочки. 3. Детали, обслуживающие передачи – валы, муфты, подшипники. Все детали машин и механизмов делятся на специального (лопатки и диски турбин, рельсы, блоки, крюки) и общего (болты, зубчатые колёса, подшипники, муфты) назначения
