- •1.1 Принцип действия генератора переменного тока
- •1.2 Контактная система зажигания
- •1.3 Система управления стартером
- •2.1Датчик для измерения крутящего момента на валу двигателя
- •2.3 Блок-схема цифровой системы зажигания
- •3.1 Мостовая трёхфазная система выпрямления напряжения.
- •3 .2 Электрическая схема управления электростартером. Ст221(ваз).
- •3.3 Принцип действия узлов бесконтактных систем зажигания.
- •4.1 Реле-регулятор рр350. Конструкция и принцип действия.
- •4.2 Принцип действия двухобмоточного тягового реле
- •4. 3 Триггер в системах управления двигателем.
- •7.1Необслуживаемые и мало обслуживаемые аккумуляторные батареи.
- •7.2Технология обслуживания системы пуска.
- •7.3Датчики частоты вращения и положения коленчатого и распределительного валов
- •8.1Схема замещения аккумуляторной батареи и её основные параметры.
- •8.2 Методы диагностирования системы пуска.
- •Факторы, влияющие на емкость аккумуляторной батареи
- •9.2 Изменение давления в цилиндре двигателя в зависимости от момента зажигания
- •9.3 Микропроцессорная система зажигания
- •10.2 Внешняя характеристика акб
- •10.3Датчик на эффекте Холла
- •Система управления стартером.
- •Датчик частоты вращения двигателя
- •Физико-химические процессы в аккумуляторе
- •12.1 Регулирование напряжения в бортовой сети атс
- •12.2 Привод стартера.
- •12.3 Принцип действия классической системы зажигания
- •Механические характеристики стартерных электродвигателей
- •13.2 Регулирование угла опережения зажигания
- •14.2 Датчики расхода топлива в электронных систем.
- •14.3 Бесконтактная система зажигания
- •1 5.1 Цифровой датчик для измерения момента.
- •15.2 Принцип действия генераторов переменного тока.
- •15.3 Зависимость давления в цилиндрах двигателя от угла опережения.
- •17.1.Схема включения стартерного электродвигателя и его характеристики
- •17.2Принцип действия датчика частоты вращения двигателя
- •17.3 Управление системой впрыска по расходу воздуха
- •18.3 Микропроцессорная система зажигания
- •19.1 Привод стартеров
- •20.1 Принцип действия муфты свободного хода
- •20.2 Принципиальная схема контактно-транзисторной системы зажигания.
- •21.3 Прибор для измерения частоты вращения вала двс.
- •22.1 Транзисторные усилители в электр сист зажигания
- •24.1 Внешняя характеристика акб
- •24.2 Классическая система зажигания
- •24.3 Принцип действия стартера
- •25 Билет
- •25.1 Система освещения
- •25.2 Микропроцессорная система управления двс
- •25.3 Принцип действия триггера
2.3 Блок-схема цифровой системы зажигания
Рис. 5.2. Блок-схема цифровой СЗ со статическим распределением энергии по цилиндрам: 1 – датчик положения коленчатого вала двигателя; 2 – датчик частоты вращения коленчатого вала двигателя; 3 – датчик нагрузки; 4 – датчик температуры; 5 – интерфейс; 6 – вычислитель; 7 – двухканальный коммутатор; 8, 9 – двухискровые (с двумя высоковольтными выводами) КЗ.
Во время работы двигателя датчики 1+4 передают информацию о частоте вращения и нагрузке двигателя, о положении коленчатого вала, о температуре двигателя и температуре окружающей среды. На основании .этой информации, обработанной в интерфейсе 5, вычислительное устройство 6 определяет оптимальный для данного режима угол опережения зажигания. В рамках цифровой системы зажигания возможно применение как традиционного механического распределителя, в функции которого остается лишь высоковольтное распределение энергии по цилиндрам двигателя, так и метода статического распределения энергии. В этом случае для четырехцилиндрового двигателя, например, применяется двухканальный коммутатор 7, два выходных транзистора которого попеременно коммутируют ток в первичных обмотках двухвыводных или одной четырехвыводной катушке зажигания. При этом блок управления формирует два сигнала, управляющих работой коммутатора.
И все же цифровые системы зажигания явились переходным этапом. Последним достижением в этой области стали микропроцессорные системы (системы IV поколения). Они практически не отличаются от управляющих ЭВМ, широко применяемых в настоящее время во многих областях науки и техники. Микропроцессорные системы управления автомобильным двигателем лишь чисто условно можно отнести к системам зажигания, так как функция непосредственного
зажигания является в них частью решения вопроса об оптимизации характеристик двигателя, однако именно в комплексных системах управления двигателем и заключен прогресс системы зажигания.
БІЛЕТ№3
3.1 Мостовая трёхфазная система выпрямления напряжения.
Рисунок 1-Мостовая трехфазная схема выпрямления:
а — электрическая схема; б — осциллограммы фазных и выпрямленного напряжений
Схема
выпрямления из 8-и диодов называется
3х фазная мостовая схема выпрямления,
она даёт min
пульсации.
n
– частота вращ. ротора генератора
Поток
в полюсах ротора возникает от тока в
обмотке возбуждения:
Если
n=1000
,
то U=14В,
на выходе выпрямит. блока, если n=6000
,
то U=70В,
всё электрооборудование может сгореть.
Поэтому в систему электроснабжения
вводится регулятор напряжения сети.
Регулятор напряжения состоит из 3х транзисторных усилителей, стабилитрона, диодов дросселя, корректирующих эл-ов и др.
У
каждого транзистора есть max
ток коллектора. Характеристик у
транзистора несколько, одна из которых
входная статическая. Зависимость тока
базы от
имеется в установившемся состоянии.
-
напряжение смещения, необходимое для
выбора рабочей точки усилителя. C
увеличением входного напряжения
увеличивается ток базы исходя из статич
входной характеристики транзистора.
- коэф. усиления потока.
Осн. параметры транзистора – коэф. усиления потока.
Маленьким изм. на входе соответствуют большие изменения на выходе.
