- •2. Определение сущности жизни. Фундаментальные свойства живого.
- •5. Строение, классификация и функции белков. Строение
- •6. Строение, классификация и функции липидов.
- •7. Строение, классификация и функции углеводов
- •8. Строение и функции нуклеотидов.
- •11. Основные этапы развития и современное состояние клеточной теории.
- •12. Структурная организация прокариотической клетки. 13. Общий план строения эукариотической клетки.
- •16. Органоиды общего значения (рибосомы, клеточный центр, цитоскелет): строение, функции и локализация в клетке.
- •18. Органеллы специального значения (жгутики, реснички, микроворсинки): строение, функции и локализация в клетке.
- •20. Структурно-функциональная организация ядра клетки.
- •21. Отличительные особенности клеток растительных и животных организмов.
- •22. Использование энергии в клетке.
- •23. Автотрофное питание. Фотосинтез и хемосинтез.
- •24. Биосинтез белка в клетке.
- •25. Временная организация клетки: понятие о жизненном (клеточном) цикле. Характеристика интерфазы.
- •26. Репликация днк.
- •30. Гибель клеток: некроз и апоптоз.
- •32. Гаметогенез.
- •33. Оплодотворение. Партеногенез. Биологические аспекты полового диморфизма.
- •37. Первичный и окончательный органогенез.
- •38. Образование, строение и функции внезародышевых органов млекопитающих.
- •39. Характеристика постэмбрионального периода развития.
- •42. Методы генетики.
- •43. Ген как функциональная единица наследственности. Классификация, свойства и локализация генов. Понятие о геноме, генотипе, кариотипе.
- •44. Генетический код. Свойства генетического кода.
- •45. Структура днк. Свойства днк как вещества наследственности и изменчивости.
- •46. Доказательства роли днк как носителя наследственной информации.
- •48. Экспрессия генов в процессе биосинтеза белка. Гипотеза оперона Жакоба и Моно.
- •50. Типы и варианты наследования признаков.
- •52. Цитоплазматическая наследственность. Цитоплазматическая наследственность (Цитоплазматическая мужская стерильность (цмс)
- •53. Понятие о взаимодействии аллельных генов. Понятие о плейотропии, пенетрантности, экспрессивности.
- •1. Комплементарность
- •2. Эпистаз
- •3. Полимерия
- •56. Пути межвидового обмена наследственной информацией.
- •61. Закон гомологических рядов н.И. Вавилова. Его фундаментальное и прикладное значение.
- •62. Спонтанные и индуцированные мутации.
- •63. Характеристика генных и хромосомных мутаций.
- •72. Искусственный отбор.
- •74. Популяция - элементарная единица эволюции. Биологический вид. Критерии вида.
- •76. Понятие об идиоадаптациях и ароморфозе. Их отличия и взаимосвязь. Ключевые ароморфозы органического мира.
- •Генобиоз и голобиоз
- •Мир рнк как предшественник современной жизни
- •Мир полиароматических углеводородов как предшественник мира рнк
- •Возникновение и исчезновение биологических структур в филогенезе
- •84. Положение вида Homo sapiens в системе животного мира. Качественное своеобразие человека.
- •Этапы антропогенеза
- •89. Популяционная структура человечества. Люди как объект действия элементарных эволюционных факторов.
- •91. Предмет, задачи, разделы и методы экологии. Связь с другими науками.
- •93. Организм и среда. Закономерности действия экологических факторов.
- •94. Основные абиотические факторы и адаптации к ним живых организмов.
- •95. Среды жизни и адаптации к ним животных и растений.
- •99. Глобальные проблемы деградации среды обитания.
8. Строение и функции нуклеотидов.
Нуклеотиды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности, Аденозинтрифосфат (АТФ), Циклический аденозинмонофосфат (цАТФ), Аденозиндифосфат (АДФ), играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Строение
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.
В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-дезоксирибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК[1].
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2'-, 3'- или 5'-гидроксильными группами рибонуклеозидов, в случае 2'-дезоксинуклеозидов этерифицируются 3'- или 5'-гидроксильные группы.
Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ). Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозинтрифосфат).
Функции
1. Универсальный источник энергии (АТФ и его аналоги).
2. Являются активаторами и переносчиками мономеров в клетке(УДФ-глюкоза)
3. Выступают в роли коферментов (ФАД, ФМН, НАД+, НАДФ+)
4. Циклические мононуклеотиды являются вторичными посредниками при действии гормонов и других сигналов(цАМФ, цГМФ).
5. Аллостерические регуляторы активности ферментов.
6. Являются мономерами в составе нуклеиновых кислот, связанные 3'-5'- фосфодиэфирными связями.
9. Строение, классификация и функции нуклеиновых кислот. Нуклеиновая кислота — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты Дезоксирибонуклеиновая кислота (ДНК) и Рибонуклеи́новая кислота (РНК) присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Классификация
Существует два типа нуклеиновых кислот — дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза — в ДНК, рибоза — в РНК) и остаток фосфорной кислоты.
Строение и функции
Молекулы ДНК и РНК существенно различаются по своему строению и выполняемым функциям.
Молекула ДНК может включать огромное количество нуклеотидов — от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей, соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.
При исследовании различных ДНК (у разных видов организмов) было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин — только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности (т. е. дополнения), а противоположные полинуклеотидные цепи называются комплементарными. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК — способность к самовоспроизведению или удвоению. При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим поколениям.
Молекулы РНК, как правило, одноцепочечные (в отличие от ДНК) и содержат значительно меньшее число нуклеотидов. Выделяют три вида РНК, различающиеся по величине молекул и выполняемым функциям, — информационную (иРНК), рибосомальную (рРНК) и транспортную (тРНК).
10. Особенности строения и жизнедеятельности вирусов. Вирус — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты).
Строение
Вирусные частицы (вирионы) состоят из двух или трёх компонентов: генетического материала в виде ДНК или РНК (некоторые, например мимивирусы, имеют оба типа молекул); белковой оболочки (капсида), защищающей эти молекулы, и, в некоторых случаях, — дополнительных липидных оболочек. Наличие капсида отличает вирусы от вирусоподобных инфекционных нуклеиновых кислот — вироидов. В зависимости от того, каким типом нуклеиновой кислоты представлен генетический материал, выделяют ДНК-содержащие вирусы и РНК-содержащие вирусы; на этом принципе основана классификация вирусов по Балтимору. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые инфекционные белки и не содержат нуклеиновых кислот. Форма вирусов варьирует от простой спиральной и икосаэдрической до более сложных структур. Размеры среднего вируса составляют около одной сотой размеров средней бактерии. Большинство вирусов слишком малы, чтобы быть отчётливо различимыми под световым микроскопом.
Зрелая вирусная частица, известная как вирион, состоит из нуклеиновой кислоты, покрытой защитной белковой оболочкой — капсидом. Капсид складывается из одинаковых белковых субъединиц, называемых капсомерами. Вирусы могут также иметь липидную оболочку поверх капсида (суперкапсид), образованную из мембраны клетки-хозяина. Капсид состоит из белков, кодируемых вирусным геномом, а его форма лежит в основе классификации вирусов по морфологическому признаку. Сложноорганизованные вирусы, кроме того, кодируют специальные белки, помогающие в сборке капсида. Комплексы белков и нуклеиновых кислот известны как нуклеопротеины, а комплекс белков вирусного капсида с вирусной нуклеиновой кислотой называется нуклеокапсидом.
Вирусы как форма жизни
Согласно одному из определений вирусы представляют собой форму жизни, согласно другому вирусы являются комплексами органических молекул, взаимодействующими с живыми организмами. Вирусы характеризуют как «организмы на границе живого». Вирусы похожи на живые организмы в том, что они имеют свой набор генов и эволюционируют путём естественного отбора, а также в том, что способны размножаться, создавая собственные копии путём самосборки. Вирусы имеют генетический материал, однако лишены клеточного строения, а именно эту черту обычно рассматривают как фундаментальное свойство живой материи. У вирусов нет собственного обмена веществ, и для синтеза собственных молекул им необходима клетка-хозяин. По этой причине они не способны размножаться вне клетки. В то же время такие бактерии, как риккетсии и хламидии, несмотря на то, что не могут размножаться вне клеток хозяина, считаются живыми организмами. Общепризнанные формы жизни размножаются делением клетки, в то время как вирусные частицы самопроизвольно собираются в инфицированной клетке. От роста кристаллов размножение вирусов отличается тем, что вирусы наследуют мутации и находятся под давлением естественного отбора. Самосборка вирусных частиц в клетке даёт дополнительное подтверждение гипотезы, что жизнь могла зародиться в виде самособирающихся органических молекул. Опубликованные в 2013 году данные о том, что некоторые бактериофаги обладают собственной иммунной системой, способной к адаптации, являются дополнительным доводом в пользу определения вируса как формы жизни.
