Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие БЖД-1.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
2.66 Mб
Скачать

Глава 3. Воздух рабочей зоны

3.1. Микроклимат производственных помещений

Человек находится в постоянной взаимосвязи с окружающей его средой. По мере возможности он приспосабливается к ней, а при невоз­можности всеми доступными средствами приспосабливает ее к себе, обеспечивая тем самым условия для своего нормального существования.

Работающий человек примерно одну треть своего времени находит­ся на производстве во взаимосвязи с производственной средой, которая характеризуется различными факторами: микроклиматом производ­ственных помещений, интенсивностью технологических процессов, при­меняемыми материалами и механизмами и т.д.

Микроклиматом производственных помещений называются метеорологиче­ские условия внутренней среды этих помещений, которые определяются действующими на организм человека сочетаниями температуры, влаж­ности, скорости движения воздуха и теплового облучения.

Показателями, характеризующими микроклимат в производ­ственных помещениях, являются:

  • температура воздуха;

  • температура поверхностей;

  • относительная влажность воздуха;

  • скорость движения воздуха;

  • интенсивность теплового облучения.

Показатели микроклимата должны обеспечивать сохранение тепло­вого баланса человека с окружающей средой и поддержание оптималь­ного или допустимого теплового состояния организма.

Организм человека представляет собой термодинамическую сис­тему с высоким постоянством средней температуры тела при значительно меняющихся условиях поступления и потерь тепла.

Для нормального протекания физиологических процессов в организме человека требуется поддержание практически постоянной тем­пературы его внутренних органов (приблизительно 36,6 °С). Но в про­цессе труда человек постоянно находится в состоянии теплового взаимо­действия с окружающей средой. Способность человеческого организ­ма к поддержанию постоянной температуры носит название терморе­гуляции. Терморегуляция достигается отводом излишнего тепла в процессе жизнедеятельности от организма в окружающее пространст­во. Эта величина зависит от степени физической нагрузки и парамет­ров микроклимата в помещении (в состоянии покоя  85 Вт, возрас­тая при тяжелой физической работе до 500 Вт).

Путями такой теплоотдачи являются: теплопроводность через одежду (QT); конвекции тела (Qк), излучения на окружающие поверхности (Qн), испарения влаги с поверхности кожи (Qисп), а также за счет нагрева выдыхаемого воздуха (Qв), что представлено урав­нением теплового баланса

Qобщ = QТ + Qк + Qи+ Qисп + Qв . (3.1)

Вклад перечисленных составляющих передачи тепла непостоя­нен и зависит от параметров микроклимата в помещении, от темпе­ратуры стен, потолка, оборудования. Теплоотдача конвекцией за­висит от температуры воздуха в помещении и скорости его движе­ния на рабочем месте, а отдача теплоты путем испарения  от от­носительной влажности и скорости движения воздуха. До 90 % от­вода общего количества тепла осуществляется через излучение, конвекцию и испарение.

Конвективный теплообмен определяется законом Ньютона

Qк = кFэ(tповtос), (3.2)

где ак коэффициент теплоотдачи конвекции (при нормальных параметрах микроклимата к=4,06 Вт/(м2°С); tпов температу­ра поверхности тела человека (принимать зимой 27,7 °С, летом 31,5 °С); tос температура воздуха, омывающего тело человека; Fэ эффективная поверхность тела человека (для практических расчетов Fэ= 1,8 м2).

Удерживаемый на внешней поверхности тела пограничный слой воздуха (до 8 мм при скорости движения воздуха  = 0) препятст­вует отдаче теплоты конвекцией. При увеличении атмосферного давления (Р) и в подвижном воздухе толщина пограничного слоя уменьшается, и при скорости движения воздуха 2 м/с она составля­ет около 1 мм. Передача теплоты конвекцией тем больше, чем ниже температура окружающей среды и чем выше скорость движения воздуха. Заметное влияние оказывает и относительная влажность воздуха, так как коэффициент теплопроводности воздуха является функцией атмосферного давления и влагосодержания воздуха.

Передача теплоты теплопроводностью описывается уравнением Фурье:

(3.3)

где 0  коэффициент теплопроводности тканей одежды челове­ка, Вт/ (м °С); 0 толщина одежды человека, м.

Теплопроводность биологических тканей человека мала, поэто­му основную роль в процессе транспортирования теплоты играет конвективная передача с потоком крови.

Лучистый поток при теплообмене излучением тем больше, чем ниже температура окружающих человека поверхностей. Он может быть определен с помощью обобщенного закона Стефана-Больцмана

(3.4)

где Cпр приведенный коэффициент излучения, Вт/(м2К4); F площадь поверхности лучистого потока, м2; 1-2 коэффициент облучаемости, зависящий от расположения и размеров поверхно­стей F1и F2и показывающий долю лучистого потока, приходя­щуюся на поверхность F2от всего потока, излучаемого поверхно­стью F1;T1 средняя температура поверхности тела и одежды че­ловека, °К; Т2 средняя температура окружающих поверхностей, °К.

Для практических расчетов в диапазоне температур окружаю­щих человека предметов 10…60 °С приведенный коэффициент излу­чения Спр = 4,9 Вт/(м2К4), а коэффициент облучаемости 1-2 =1,0. В этом случае значение лучистого потока зависит в основном от степени черноты  итемпературы окружающих человека предметов, т.е. Qл = f (Топ; ).

Влияние температуры окружающего воздуха на человеческий организм связано в первую очередь с сужением или расширением кровеносных сосудов кожи. Под действием низких температур воз­духа кровеносные сосуды кожи сужаются, в результате чего замед­ляется поток крови к поверхности тела и снижается теплоотдача от поверхности тела за счет конвекции и излучения. При высоких температурах окружающего воздуха наблюдается обратная картина: за счет расширения кровеносных сосудов кожи и увеличения притока крови существенно увеличивается теплоотдача в окру­жающую среду.

Повышенная влажность (> 85 %) затрудняет теплообмен между организмом человека и внешней средой вследствие уменьшения испарения влаги с поверхности кожи, а низкая влажность (< 20 %) приводит к пересыханию слизистых оболочек дыхательных путей. Движение воздуха в помещении улучшает теплообмен между те­лом человека и внешней средой, но излишняя скорость движения воздуха (сквозняки) повышает вероятность возникновения про­студных заболеваний.

Количество теплоты, отдаваемое человеком в окружающую сре­ду при испарении влаги, выводимой на поверхность тела потовыми железами:

Qп = Gпr, (3.5)

где Gn масса выделяемой и испаряющейся влаги, кг/с; r теп­лота испарения выделяющейся влаги, Дж/кг.

Различают острые и хронические формы нарушение терморегуляции.

Острые формы нарушения терморегуляции:

тепловая гипертермия теплоотдача при относительной влаж­ности воздуха75…80 %  легкое повышение температуры тела, обильное потоотделение, жажда, небольшое учащение дыхания и пульса. При более значительном перегреве возникает также одышка, головная боль и головокружение, затрудняется речь и др.

судорожная болезнь преобладание нарушения водно-солево­го обмена  различные судороги, особенно икроножных мышц, сопровождаемые большой потерей пота, сильным сгущением крови. Вязкость крови увеличивается, скорость её движения уменьшается и поэтому клетки не получают необходимого количества кислорода.

тепловой удар дальнейшее протекание судорожной болезни  потеря сознания, повышение температуры до 40…41 °С, слабый учащенный пульс. Признаком тяжелого поражения при тепловом ударе является полное прекращение потоотделения.

Тепловой удар и судорожная болезнь могут заканчиваться и смертельным исходом.

Хронические формы нарушения терморегуляции приводят к изменениям в состоянии нервной, сердечно-сосудистой и пищеварительной систем человека, формируя производственно-обусловленные заболе­вания.

Длительное охлаждение часто приводит к расстройству деятельности капилляров и мелких артерий (ознобление пальцев рук, ног кончиков ушей). При этом происходит и переохлаждение всего орга­низма. Широко распространены вызываемые охлаждением заболева­ния периферийной нервной системы, особенно пояснично-крестцовый радикулит, невралгия лицевого, тройничного, седалищного и других нервов, обострения суставного и мышечного ревматизма, плев­рит, бронхит, асептическое и инфекционное воспаление слизистых оболочек дыхательных путей и др.

Влажный воздух лучше проводит тепло, а подвижность его увеличивает теплоотдачу конвекцией, что это приводит к большому обморо­жению (даже смерти) при условии низкой температуры, высокой влажности и подвижности воздуха.

Выделяют три стадии охлаждения организма челове­ка, которые характеризуются следующими показателями;

III стадии  температура тела от 37 до 35,5°С. При этом происходит:

  • спазм сосудов кожи;

  • урежение пульса;

  • снижение температуры тела;

  • повышение артериального давления;

  • увеличение легочной вентиляции;

  • увеличение теплопродукции.

Таким образом, в пределах до 35 °С организм пытается бороться собственными силами против охлаждающего микроклимата.

III стадия  температура тела ниже 35 °С. При этом происходит: падение температуры тела;

  • снижение деятельности центральной нервной системы;

  • снижение артериального давления;

  • уменьшение легочной вентиляции;

  • уменьшение теплопродукции.

Заболевания, вызываемые охлаждением: обморожения, отеки лок­тей и ступней, острые респираторные заболевания и грипп.

Создание благоприятного микроклимата рабочей зоны является гарантом поддержания терморегуляции организма, повышения работоспособности человека на производстве.

Министерством здравоохранения Российской Федерации (с 2004 г.  Министерство здравоохранения и социального развития Российской Федерации) разработаны гигиенические требования к показателям микроклимата рабочих мест производственных помещений, которые устанавливаются с учетом интенсивности энергозатрат работающих, времени выполнения работы, периодов года.

Нормативные документы определяют понятия оптимальных и допустимых параметров микроклимата.

Оптимальными микроклиматическими условиями являются такие, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционально­го и теплового состояния организма без напряжения механизмов его терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работо­способности (табл. 3.1).

Перепады температуры воздуха по высоте и по горизонтали, а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны превышать 2 С и выходить за пределы величин, указанных в табл. 3.1 для отдельных категорий работ.

Допустимыми условиями являются такие, которые при длитель­ном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения функциональ­ного и теплового состояния организма, сопровождающиеся напря­жением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но мо­гут наблюдаться временное ухудшение самочувствия и снижение работоспособности.

Таблица 3.1

Оптимальные величины показателей микроклимата на рабочих местах производственных помещений

ГОСТ 12.1.005-88 «Воздух рабочей зоны Общие санитарно-гигиенические требования» устанавливает оптимальные и допус­тимые параметры микроклимата в производственном помещении в зависимости от тяжести выполняемых работ, количества избыточ­ного тепла в помещении и сезона (времени года). Оптимальные параметры микроклимата в производственных помещениях обес­печиваются системами кондиционирования воздуха, а допустимые параметры  обычными системами вентиляции и отопления.

В соответствии с этим ГОСТом различают холодный и переход­ный периоды года (со среднесуточной температурой наружного воздуха ниже +10 °С), а также теплый период года (с температурой +10 °С и выше).

Все категории выполняемых работ подразделяются на: легкие (энергозатраты до 172 Вт), средней тяжести (172…293 Вт) и тяже­лые (более 293 Вт).

По количеству избыточного тепла все производственные поме­щения делятся в зависимости от избытка явной теплоты, т.е. тепло­ты, поступающей в них от оборудования, отопительных приборов, солнечного нагрева, людей и любых других источников воздейст­вия на температуру воздуха в этом помещении. Помещения с не­значительными избытками явной теплоты (QЯТ< 23,2 Дж/м3с) от­носятся к «холодным», а со значительными избытками явной теп­лоты (QЯТ>23,2 Дж/м3с)  к «горячим».

Условия труда по показателям микроклимата делятся на 4 класса:

  • нагревающий – сочетание температуры, влажности и скорости движения воздуха, при котором происходит накопление тепла в организме выше оптимального (> 0,87 кДж/кг) или увеличение доли потери тепла испарения > 30 % в общей структуре теплового баланса (характерен для машинных отделений судов, секций тепловозов, кузнечных, сварочных, литейных цехов или ремонтных участков транспортных предприятий);

  • охлаждающий – сочетание температуры, влажности и скорости движения воздуха, приводящее к дефициту тепла в организме (> 0,87 кДж/кг) в результате снижения температуры оболочки тела (верхних слоев тканей) (характерен для рефрижераторных секций на железных дорогах и рефрижераторных трюмов на судах, неотапливаемых складов, а также депо в зимнее время, куда поступает подвижной состав после длительного нахождения на холоде);

  • переменный (охлаждающий и нагревающий), встречающийся при работе экипажей судов;

  • умеренного термического действия, присущий большинству производственных цехов обслуживающих предприятий транспорта и административных помещений.

Методы обеспечения нормальных микроклиматических условий.

1. Отопление –совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи необходимого количества теплоты в обогреваемых помещениях.

Системы отопления подразделяются:

  • по расположению основных элементов – на местные и центральные;

  • по виду теплоносителя – на водяные, паровые, воздушные и газовые.

2. Защита от теплового излучения:

  • теплоизоляция – температура нагретых поверхностей оборудования, коммуникаций и ограждений на рабочих местах не должна превышать 45 °С, а для оборудования, внутри которого температура равна или ниже 100 °С, – не должна превышать 35 °С (в качестве теплоизоляционных используются мастичные, оберточные и засыпные материалы);

  • экранирование – использование теплоотражающих, теплопоглощающих и теплоотводящих экранов;

  • мелкодисперсное распыление воды – водяные завесы;

  • воздушное душирование рабочих мест;

  • оптимальное размещение оборудования и рабочих мест.

3. Герметизация помещений –улучшение плотности подгонки дверей, рам, заслонок и т.п.; двойное застекление; оборудование шлюзов; устройство тепловых воздушных завес.

  1. Кондиционирование – искусственная автоматическая обработка воздуха с целью поддержания в помещениях заранее заданных метеорологических условий, независимо от изменения наружных условий и режимоввнутри помещения.

  2. Рациональные режимы труда и отдыха – организация дополнительных перерывов в рабочей смене для обогрева или охлаждения работников в специально оборудованных для этой цели помещениях.

  3. Рациональный питьевой режим и медицинские средства профилактики.

Рассмотрим более подробно наиболее эффективные методы защиты от неблагоприятного воздействия микроклимата.

Кондиционирование воздуха

Для достижения в производственных помещениях постоянных тем­пературы, влажности и чистоты воздуха независимо от атмосферных условий и времени года применяют установки кондиционирования воз­духа (рис. 3.1).

Кондиционирование воздуха автоматическое поддержание в за­крытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) в целях обеспечения оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса. Такие установки автоматически создают самостоятельный микроклимат. При кондиционировании воздух нагревают или охлаждают до нужной температуры, осушают или увлажняют, подвергают очистке от пыли, примесей паров и газов.

Рис. 3.1. Схема кондиционера:

1 заборный воздуховод; 2 фильтр; 3 соединительный воздуховод; 4 калориферы первой и второй ступеней подогрева; 5 форсунки воздухоочистки; 6 переходник-каплеуловитель; 7 калориферы третьей ступени подогрева; 8 вентилятор; 9 отводной воздуховод

Отопление

В холодный период года в производственных помещениях следует предусматривать отопление. Отопительные приборы размещают, как правило, под световыми проемами в местах, доступных для осмотра, ре­монта и очистки. Длину отопительного прибора выбирают от назначе­ния помещения. Например, в школах, больницах длина отопительного прибора должна быть, как правило, не менее 75 % длины светового проема.

По назначению отопление, помимо основного, может быть местным и дежурным.

Местное отопление предусматривается, например, в неотапливае­мых помещениях для поддержания температуры воздуха, соответствую­щей технологическим требованиям в отдельных помещениях и зонах, а также на временных рабочих местах при наладке и ремонте оборудо­вания.

Дежурное отопление предусматривается для поддержания темпера­туры воздуха в помещениях отапливаемых зданий, когда они не использу­ются, и в нерабочее время. При этом температура воздуха принимается ниже нормируемой, но не ниже 5 °С, обеспечивая восстановление норми­руемой температуры к началу использования помещения или к началу работы. Специальные системы дежурного отопления допускается проектировать при экономическом обосновании.

По конструктивному выполнению отопительные системы бывают водяные; паровые; воздушные; электрические; газовые. Применение тех или иных отопительных систем определяется назначением производ­ственного помещения.

Рассмотрим достоинства и недостатки этих видов отопления.

Достоинствами печного отопления являются: малая стоимость отопительного устройства, малая затрата металла, возможность использования любого местного топлива, высокий тепловой КПД современных конструкций печей. Недостатками  высокая пожар­ная опасность, затрата физического труда на топку печей, большие площади для хранения топлива, большая площадь помещения, за­нимаемая печью, неравномерность температуры в помещении в те­чение суток, опасность отравления оксидом углерода.

Достоинствами водяного отопления считаются: большая теплоемкость теплоносителя (воды), малая площадь поперечного сечения труб, ограниченная температура отопительных приборов, рав­номерность температуры внутри помещения, бесшумность и долговечность системы. Недостатками этого вида отопления являются: большой расход металла, значительные гидростатические давления, инерционность регулирования теплопередачи, возможность размораживания (повреждения) системы при прекращении нагрева теплоносителя.

Среди достоинств парового отопления можно назвать: легкоподвижный теплоноситель с малой тепловой инерцией быстро прогревает помещение, небольшое гидростатическое давление в системе отопле­ния. Недостатки  это высокая температура отопительных приборов (чаще всего более 100 °С), высокая коррозия металлической системы отопления, большой шум при запуске пара в систему отопления.

Достоинствами воздушного отопления являются: возможность быстрого изменения температуры в помещении, равномерность температуры в пространстве помещения, пожарная безопасность, совмещение отопления с общей вентиляцией помещения, вынос отопительных приборов из отапливаемых помещений. Недостат­ками  большие размеры воздуховодов, увеличение нерациональ­ных потерь тепла за счет выброса воздуха через вытяжные про­емы вентиляции, большой расход теплоизоляционных материалов при конструировании воздуховодов.

К достоинствам электрического отопления можно отнести: малые затраты на устройство системы, простота передачи энергии, высо­кий тепловой КПД, отсутствие устройств для переработки и использо­вания топлива, простота автоматизации процессов теплопередачи, отсутствие загрязнения атмосферы продуктами сгорания топлива. Недостатками являются высокая стоимость электрической энергии, высокая температура нагревательных элементов и их пожарная опасность.

Газовое отопление может использоваться в паровых и водяных котлах, а также при печном отоплении. Достоинствами газового отопления является в ряде случаев сравнительно низкая стоимость горючего газа по сравнению с другими видами топлива.

Принципы расчета отопления.Задачей расчета отопления является определение баланса тепло­вой мощности между суммарными выделениями тепла в помеще­нии, включая тепло отопительных приборов, и суммарными поте­рями тепла, включая потери через наружные ограждения здания (сте­ны, окна, пол, крышу и т.п.).

Этот баланс можно выразить соотношением

QотQпот – Qвыд, (3.6)

где Qот– тепловая мощность отопительных приборов, Вт;

Qпот – суммарные потери тепла в помещении, Вт;

Qвыд – суммарные выделения тепла нагретого оборудования, приборов в промышленных зданиях, а в общественных зданиях – людей, Вт.

Суммарные выделения тепла нагретого оборудования, как правило, определяются из технической документации на оборудования или технологический процесс.

Наиболее сложным является расчет возможных потерь тепла через ограждающие поверхности помещений (здания, пассажирс­кий подвижной состав, кабины управления и т.п.).

Суммарные тепловые потери через ограждения (стены, потолок, оконные проемы и т.п.) определяются из соотношения:

(3.7)

где Ктеплi– коэффициент теплопередачи материала i-й ограждающей кон­струкции, Вт/м2 °С или Вт/м2 К;

tв, tн – соответственно температуры внутри помещения (определяется по ГОСТ 12.1.005–88 или санитарным нормам) и снаружи здания (определяется как средняя за наиболее холодный месяц года из метеорологичес­ких наблюдений для данной местности), °С или К;

Si– площадь i-й ограждающей конструкции, м2.

Необходимая суммарная поверхность нагревательных приборов Fн.п определяется исходя из теплового баланса (3.6):

, (3.8)

где Кпр коэффициент теплопередачи материала теплового прибора (для металлов Кпр= 1), Вт/м2 °С;

tг температура нагревательного элемента теплового прибора, материала (например, горячей воды), °С;

tв нормируемая температура внутри помещения, °С;

остыв коэффициент остывания воды в трубопроводах.

Зная общую площадь необходимых отопительных приборов и площадь нагревательной поверхности одного выбранного отопитель­ного прибора для данного производственного помещения, опреде­ляют общее число отопительных приборов выбранной конструкции.

Теплоизоляция поверхностей источников излучения (печей, сосудов, трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное.

Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и смешанной. Мастичная теплоизоляция осуществляется нанесением мастики (штукатурного раствора с теплоизоляционным наполнителем) на горячую поверхность изолируемого объекта. Очевидно, эту изоляцию можно применять на объектах любой конфигурации. Оберточную изоляцию изготовляют из волокнистых материалов: асбестовой ткани, минеральной ваты, войлока и др. Наиболее пригодна оберточная теплоизоляция для трубопроводов. Засыпную теплоизоляцию применяют при прокладке трубопроводов в каналах и коробах, там, где требуется большая толщина изоляционного слоя, или при изготовлении теплоизоляционных панелей. Теплоизоляцию штучными ила формованными изделиями, скорлупами применяют для об­легчения работ. Смешанная изоляция состоит из нескольких различных слоев. В первом слое обычно устанавливаются штучные изделия. На­ружный слой изготовляется из мастичной или оберточной изоляции.

Снаружи теплоизоляции рекомендуется устанавливать алюминиевые кожухи. Это позволяет повышать долговечность изоляции и дополнительно снижать излучение от источника.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и сниже­ния температуры поверхностей, окружающих рабочее место. Ослабле­ние теплового потока за экраном обусловлено его поглотительной и отражательной способностью. В зависимости от того, какая способность экрана более выражена, различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По степени прозрачности экраны делят на три класса:

  1. непрозрачные: металлические водоохлаждаемые и футерированные асбестовые, альфолиевые, алюминиевые экраны;

  2. полупрозрачные: экраны из металлической сетки, цепные завесы,экраны из стекла, армированного металлической сеткой (все эти экранымогут орошаться водяной пленкой);

3) прозрачные: экраны из различных стекол (силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного), пленочные водяные завесы.

Воздушное душирование  подача воздуха в виде воздушной струи, направленной на рабочее место применяют при воздействии на работающего теплового облучения интенсивностью 0,35 кВт/м2 и более, а также 0,175...0,35 кВт/м2 при площади излучающих поверхностей в пределах рабочего места более 0,2 м2. Воздушное душирование устраивают также для производственных процессов с выделением вредных газов или паров и при невозможности устройства местных укрытий.

Охлаждающий эффект воздушного душирования зависит от раз­ности температур тела работающего и потока воздуха, а также от скорости обтекания воздухом охлаждаемого тела. Для обеспечения на рабочем месте заданных температур и скоростей воздуха ось воздушного потока направляют на грудь человека горизонтально или под углом 45 , а для обеспечения допустимых концентраций вредных веществ ее направляют в зону дыхания горизонтально или сверху под углом 45 .

В потоке воздуха из душирующего патрубка должны быть по возможности обеспечены равномерная скорость и одинаковая температура.

Расстояние от кромки душирующего патрубка до рабочего места должно быть не менее 1 м. Минимальный диаметр патрубка принимают равным0,3 м; при фиксированных рабочих местах расчетную ширину рабочейплощадки принимают равной 1 м. При интенсивности облучения свыше 2,1 кВт/м2 воздушный душ не может, обеспечить необходимого охлаждения. В этом случае необ­ходимо предусматривать теплоизоляцию, экранирование или воздушное душирование. Для периодического охлаждения рабочих устраивают радиационные кабины, комнаты отдыха.

Воздушные завесы предназначены для защиты от прорыва холод­ного воздуха в помещение через проемы здания (ворота, двери и т.п.). Воздушная завеса представляет собой воздушную струю, направленную под углом навстречу холодному потоку воздуха (рис. 3.2). Она играет роль воз­душного шибера, уменьшая прорыв воздуха через проемы. Согласно СНиП 02.04.91 воздушные завесы необходимо устраивать у проемов отапливаемых помещений, открывающихся не реже чем один раз в час либо на 40 мин единовременно при температуре наружного воздуха минус 15 °С и ниже. Количество и температуру воздуха определяют расчетным путем.

Рис. 3.2. Воздушно-тепловая завеса

Количество холодного наружного воздуха L0, м3/с, проника­ющего в помещение при отсутствии тепловой завесы, определя­ется как

L0 = HBVвет, (3.9)

где Н, В высота и ширина проема, м; Vвет скорость воздуха (ветра), м/с.

Количество холодного наружного воздуха L нap, м3/с, проника­ющего в помещение при устройстве воздушной тепловой завесы, определяется по формуле

(3.10)

где воздушная завеса принимается как шибер с высотой h.

В этом случае количество воздуха, необходимое для воздушной тепловой завесы, м3/с:

(3.11)

где  функция, зависящая от угла наклона струи и коэффици­ента турбулентной структуры; b ширина щели, расположенной снизу проема.

Скорость выхода струи воздуха из щели Vш, м/с, определяется по формуле

(3.12)

Средняя температура воздуха tср, С, проникающего в помеще­ние,

(3.13)

где tвн, tнар – температура внутреннего и наружного воздуха, С.

Применяют несколько основных схем воздушных завес. Завесы с нижней подачей (рис. 3.3 а) наиболее экономичны по расходу воздуха и рекомендуются в том случае, когда недопустимо понижение темпера­туры вблизи проемов. Для проемов небольшой ширины рекомендуется схема на рис. 3.3 б. Схему с двусторонним боковым направлением струй (рис. 3.3 в) используют в тех случаях, когда возможна остановка транс­порта вворотах.

а

в-в

б в

Рис. 3.3. Схемы воздушных завес

а – с нижней подачей воздуха; б – односторонние; в – двусторонние

Воздушные оазисы предназначены для улучшения метеорологических условий труда, как правило, для отдыха на ограниченной площади.

Для этого разработаны схемы кабин с легкими передвижными перегород­ками, которые затапливаются воздухом с соответствующими парамет­рами.

Мероприятия по профилактике неблагоприятного воздействия тепла и холода должны предусматривать:

  • предупреждение выхолаживания производственных помещений;

  • использование средств индивидуальной защиты;

  • подбор рационального режима труда и отдыха.

Так, например, спецодежда должна быть воздухо- и влагонепроницаемой, иметь удобный покрой. В качестве материалов применяют такие ткани, как хлопчатобумажная, льняная, грубошерстное сукно. К специальной защитной одежде относятся: тулупы, пальто, полупальто, полушубки, халаты, комбинезоны, полукомбинезоны, жилеты и т.д.

Рациональный режим труда и отдыха разрабатывается применительно к конкретным условиям работы. Частые короткие перерывы более эффективны для поддержания работоспособности, чем редкие, но продолжительные. Например, при физических работах средней тяжести на открытом воздухе предусматриваются перерывы:

- в теплое время года:

  • при температуре воздуха до 25 °С – 10-минутные перерывы после 50…60 мин интенсивной работы;

- при температуре воздуха в диапазоне 25...33 °С рекомендуется 15-минутный перерыв после 45 мин работы;

- на период наиболее жаркого времени рекомендуется разрыв рабочей смены на 4…5 ч;

- в холодное время года для непостоянных рабочих мест:

- при температуре воздуха минус 10 °С и ниже обязательны перерывы на обогрев продолжительностью 10…15 мин каждый час;

- при температуре наружного воздуха от минус 30 до минус 45 °С обязательны 15-минутные перерывы через каждые 60 мин от начала рабочей смены и до обеда, а затем через каждые 45 мин работы.

Кроме того,организуются специальные помещения для обогревания, в которых необходимо предусматривать возможность питья горячего чая.