- •1. История
- •2.Разработка микропроцессорной системы на основе микроконтроллера.
- •2.1. Каналы связи для дистанционного управления.
- •2.2Устройство бытовых пду.
- •3. Методы и системы дистанционного управления
- •4.3. Дешифратор адреса.
- •6. Принцип действия пду.
- •6.1.Выбор, описание и расчеты элементной базы
- •6.2. Разработка схемы электрической принципиальной.
- •6.3.Типы пду
- •6.4.Пду бытовой аппаратуры
- •7. Неисправности беспроводных пультов ду
- •8. Техника безопасности при сборке пду
2.1. Каналы связи для дистанционного управления.
- Проводной канал — используется там, где нет возможности применить беспроводные каналы, например, из-за отсутствия прямой видимости, наличия экранировки, соображений секретности и т. д., главным образом для управления системами мобильных объектов, оборудованием производственных объектов, лабораторий, или специальных объектов (военного и другого назначения).
- Радиоканал - используется, главным образом, для управления мобильными объектами -радиоуправляемыми спортивными моделями и игрушками, оборудованием для чрезвычайных ситуаций (роботы и т. д.), беспилотными летательными аппаратами, военными мобильными объектами.
- Ультразвуковой канал - используется редко, для управления мобильными и стационарными объектами на сравнительно небольшом расстоянии.
- Инфракрасный канал -используется, как правило, для бытовой электроники.
2.2Устройство бытовых пду.
Модуляция инфракрасного светодиода изменяется в зависимости от нажатой кнопки. Большинство пультов ДУ для электроники используют светодиод, испускающий пучок инфракрасного излучения с длиной волны 0,75—1,4 микрон, который достигнет устройства. Этот свет невидим для человеческого глаза, но распознаётся устройством, так же как и сенсором цифрового фотоаппарата.
Для одноканального (с одной функцией, с одной кнопкой) пульта достаточно наличия сигнала, чтобы передать команду. Для пультов с несколькими функциями необходима более сложная система: модуляция несущего сигналами разной частоты. Сейчас чаще всего используется цифровая обработка сигналов. Сигнал, соответствующий нажатой кнопке
передаётся непрерывно до тех пор, пока кнопка не будет отпущена.
3. Методы и системы дистанционного управления
Внедрение электронных средств регулировки параметров, характеристик и режимов передатчика позволяет осуществлять управление передатчиком на расстоянии. Такое управление, называемое дистанционным, широко используется в профессиональных передатчиках.Дистанционное управление радиовещательным передатчиком, находящимся в соседнем помещении или в этом же, но на расстоянии в несколько десятков метров, создает для обслуживающего персонала повышенные удобства. Не подходя к передатчику, оператор имеет возможность включить и выключить передатчик, настроить его на нужную частоту, переключить источник сигнала, и т.д. В радиовещательных передатчиках для дистанционного управления используются ультразвуковые, инфракрасные колебания или управление с помощью линий связи.
Структурная схема дистанционного управления с использованием источника инфракрасного излучения. Необходимая для управления передатчиком информация набирается оператором на пульте управления ПУ, сигналы управления с его выхода после преобразования связи устройством кодирования УК подаются на фотодиод ФД (излучатель), излучающий инфракрасные импульсы в направлении фототранзистора ФТ, находящегося на управляемом передатчике. Принятые фототранзистором импульсы усиливаются и декодируются в устройстве декодирования УД, с выхода которого сигналы управления поступают на соответствующие цепи регулировок передатчика. В передатчике с микропроцессорным управлением пульт может частично или полностью дублировать панель управления передатчика. Инфракрасные колебания хорошо поглощаются стенами помещения и расположенной в нем мебелью, при этом практически не создаются мешающие воздействия устройствам, находящимся в других помещениях. Системы ДУ на ультразвуковых колебаниях действуют по такому же принципу. Дистанционное управление передатчиком с помощью линий связи. управления рассмотрим на примере управления передатчиком декаметрового диапазона. В таких РПДУ контроль и управление его работой производится из диспетчерского пункта (ДП), находящегося от передатчика на некотором расстоянии, что повышает оперативность радиосвязи за счет управления передатчиком с помощью ЭВМ по заранее заданной программе, а при работе передатчика на необслуживаемых радиостанциях сокращает обслуживающий персонал. Радиопередатчик, находящийся на значительном расстоянии (например, много километров) от оператора или ЭВМ, управляется путем односторонней либо двусторонней передачи информации. В первом случае передаются только команды телеуправления (ТУ); во втором для контроля за работой передатчика организуется обратный канал связи для передачи информации телесигнализации (ТС). При дистанционном управлении для каждого органа управления РПДУ предусматривается либо отдельная линия связи, либо число линий связи меньше числа объектов управления. В первом случае сигналы передаются с помощью параллельного кода, во втором случае происходит уплотнение канала связи, и сигналы передаются с помощью последовательных кодов.
4. Система дистанционного управления передатчиком, сопряженная с шиной компьютера IBM PC. В данной дипломной работе разработана компьютерная система дистанционного управления УКВ ЧМ радиовещательным передатчиком типа HF-1000. Данный способ позволяет использовать компьютер IBM PC АТ в качестве устройства, вырабатывающего команды управления. Система состоит из двух модулей: платы сопряжения и исполнительного устройства. Плата сопряжения вставляется в стандартный слот расширения системной шины компьютера IBM PC AT и управляется программным способом. Исполнительное устройство смонтировано в отдельном корпусе с автономным источником питания и соединяется с платой сопряжения с помощью 8-жильного кабеля через оптоэлектронную развязку. Команды управления поступают на передатчик по кабелю длиной до 300 м.
4.1 Системная шина компьютера IBM PC. Системная шина IBM PC представляет собой расширение шины микропроцессора фирмы Intel. Используемые ИС совместимы с транзисторно-транзисторной логикой (ТТЛ), помимо сигнальных выводов имеются выводы для подачи питания +5 В и +12 В и соединения с общим проводом. На рис. 5 показана разводка выводов системной шины IBM PC – в общей сложности 62 вывода. Все сигналы имеют активный высокий уровень во всех случаях, кроме оговоренных отдельно. А0—А19. Это 20 выводов адресов памяти и устройств ВВ. А0 – младший значащий разряд (МЗР), А19 – старший (СЗР). Сигналы для этих линий формируются либо процессором , либо контроллером прямого доступа к памяти. D0—D7. Эти восемь выводов образуют двустороннюю шину данных. D0 – младший разряд, D7 – старший. Во время цикла записи микропроцессор выдает информацию на шину данных по сигналу записи в порт ВВ (IOW) или в память (MEMW), которые тактируют подачу данных в порт ввода-вывода или в память. Во время цикла чтения с шины порт ввода-вывода или память должны направлять информацию на шину данных по сигналу чтения с порта ВВ (IOR) или чтения из памяти (MEMR), которые служат для занесения данных в буфер микропроцессора. MEMR, MEMW, IOR, IOW. Эти сигналы с активным низким уровнем управляют операциями чтения и записи. Они могут выдаваться процессором или контроллером ПДП. ALE (разрешение регистра адреса). На системной шине PC сигнал ALE указывает на начало шинного цикла, который инициируется процессором. Когда этот сигнал выставлен, по системной шине данных не будет передаваться адресная информация. AEN (разрешение адреса). Этот сигнал выдается контроллером ПДП и указывает, что идет выполнение цикла прямого доступа к памяти. Обычно он служит для блокировки логики декодирования порта ВВ во время цикла прямого доступа к памяти. Это необходимо для того, чтобы адрес прямого доступа к памяти не был случайно использован в качестве адреса ВВ. Такая ситуация в принципе может возникнуть, поскольку управляющие линии IOR и IOW могут переходить в активное состояние во время цикла ПДП. OSC (сигналы задающего генератора), CLOCK. OSC – высоко- частотный системный синхросигнал с периодом повторения 70 нс (частота 14,31818 МГц) и коэффициентом заполнения 0,5. Частота сигнала CLOCK равна одной трети частоты задающего генератора (4,77 МГц). Она является рабочей частотой микропроцессора Intel . IRQ2—IRQ7 (запросы на прерывание). Устройства ввода-вывода используют шесть линий ввода для генерирования запросов на прерывание, направляемых процессору. Этим запросам присваиваются определенные приоритеты (IRQ2 задает высший приоритет, а IRQ7 – низший). Запрос на прерывание генерируется путем выдачи высокого логического уровня на линию IRQ и поддержания его до тех пор, пока прием этого сигнала не будет подтвержден процессором. Поскольку сигнал подтверждения прерывания (INTA), выдаваемый процессором, не появляется на системной шине, подтверждение обычно поступает по одной из линий порта ВВ, для чего используется команда OUT, выдаваемая подпрограммой обработки прерываний. I/O CH RDY (готовность канала ВВ). Этот входной сигнал используется для инициирования периодов ожидания, с помощью которых увеличивается длительность шинных циклов микропроцессора при работе с "медленными" запоминающими и внешними устройствами. I/O CH CK (проверка канала ВВ). Этот сигнал с активным низким уровнем служит для "информирования" процессора о том, что в данных, поступивших из памяти или от устройства ВВ, содержится ошибка, обнаруженная контролем по четности. RESET DRV (инициирование сброса). Этот сигнал служит для сброса или установки в исходное состояние системной логики либо при включении питания, либо в том случае, когда после подачи питания обнаруживается, что один из уровней напряжения питания выходит за допустимые рабочие пределы. Этот сигнал синхронизируется срезом импульса OSC.
DRQ1—DRQ3
(запрос прямого доступа к памяти). Эти
входные сигналы служат для запроса
доступа к асинхронным каналам, которые
используются периферийными устройствами,
чтобы получить возможность прямого
доступа к памяти. На линии DRQ
должен поддерживаться высокий уровень
сигнала до тех пор, пока уровень на
соответствующей линии DACK
не станет низким.
DACK0—DACK3
(сигналы подтверждения запроса ПДП).
Эти сигналы с активным низким уровнем
используются для подтверждения приема
сигналов запроса ПДП и для регенерации
динамической памяти (DACKO).
Т/С
(конец блока данных). По этой линии
выдается импульс, когда достигается
конец блока данных, передаваемых по
каналу прямого доступа к памяти.
В
разработанном устройстве сопряжения
используются сигналы D0
– D7,
A0
– A9,
AEN,
IOR,
IOW,
RESET.
4.2. Схема буферизации. В связи с тем, что нагрузочная способность шины ограничена, необходимо подключать к ней устройства через схемы буферизации. В данном устройстве в качестве буферных элементов используются шинные формирователи КР1533АП5 (два четырехканальных формирователя с тремя состояниями на выходе с инверсным управлением). Всего для буферизации разрядов А0 - А9 адресной шины и требуемых управляющих сигналов используется две микросхемы.
