- •«Оренбургский государственный университет»
- •Лабораторный практикум по курсу «методы и средства измерений, испытаний и контроля»
- •Часть 2
- •Содержание
- •8 Лабораторная работа № 24 Измерение расхода - дифференциальным манометром................................................................................................................183
- •17 Лабораторная работа № 32Датчик Метран ............................................................436
- •Введение
- •1 Раздел 3. Измерение теплоты
- •1.1 Лабораторное оборудование кафедры мСиС для раздела 3
- •2 Лабораторная работа № 19 Регулятор «Метакон»
- •2.1 Назначение. Область применения. Условия эксплуатации.
- •2.2 Устройство
- •2.3 Термоэлектрические преобразователи температуры (термопары)
- •Термометры сопротивления (терморезисторы)
- •2.5 Метрологические характеристики датчиков температуры
- •2.6 Метрологические характеристики преобразователей типа Метакон
- •2.7 Рекомендации потребителю
- •2.8 Как правильно измерить температуру
- •2.9 Указание мер безопасности
- •2.10 Пример отчета по лабораторной работе
- •2.11 Варианты и исходные данные для выполнения лабораторной работы
- •2.12 Вопросы для самоконтроля
- •3Лабораторная работа № 20 Поверка теплотехнических величин
- •3.1 Поверка средств измерений
- •3.2 Измерения теплотехнических величин
- •3.3 Поверка температуры
- •Потенциометры автоматические следящего уравновешивания ксп2
- •3.5 Приборы для поверки теплотехнических величин
- •3.5.1 Термостаты Термотест 300 / 100 для поверки и калибровки термометров при высоких и низких температурах
- •3.6 Приборы для поверки давления
- •3.7 Приборы для поверки расхода и количества вещества
- •3.8 Проливная установка
- •Заключение
- •4 Лабораторная работа № 21 Дилатометрические термометры
- •4.1 Виды термометров
- •4.1.4 Дилатометрические термометры
- •4.3 Устройства терморегулирующие дилатометрические электрические тудэ м1
- •4.9 Пример отчета по лабораторной работе
- •Варианты и исходные данные для выполнения лабораторной работы
- •5 Лабораторная работа № 22 Термометры стеклянные ртутные
- •5.1 Основные сведения о термометрии
- •5.2 Стеклянные жидкостные термометры
- •5.3 Обозначения типов термометров
- •5.4 Метрологические характеристики стеклянных жидкостных термометров. Пределы допускаемых погрешностей, учет погрешностей, введение поправок в показание термометров
- •5.5 Современный типаж термометров распространённых в применении
- •6 Лабораторная работа № 23 Термометры и преобразователи
- •6.1 Манометрические термометры
- •6. 2 Манометрические, жидкостные термометры
- •6. 3 Основные параметры и размеры
- •6.3.2 Технические требования
- •6.4 Ремонт манометрических термометров
- •6. 5 Монтаж манометрических термометров
- •6.6 Эксплуатация и наладка манометрических термометров
- •6. 7 Поверка манометрического термометра
- •Заключение
- •7 Раздел 4. Измерение расхода
- •7.1 Основные понятия и положения
- •7.2 Расход жидкости. Основные понятия
- •7.3 Расходомеры. Общая классификация.
- •7.4 Техника измерения расхода
- •8 Лабораторная работа № 24 Измерение расхода –
- •8.1 Измерение расхода и количества вещества
- •8.2 Сужающие устройства
- •8.3 Метод определения расхода
- •8.4 Общие требования к условиям измерений
- •8.5 Установка стандартных сужающих устройств
- •8.6 Диафрагмы
- •8.7 Проведение поверки сужающих устройств
- •8.8 Оформление результатов проверки измерительных комплексов и поверки сужающих устройств
- •8.9 Дифманометры
- •8.10 Выбор прибора для поверки дифманометра
- •9 Лабораторная работа № 25 Ареометры
- •9.1 Стеклянные ареометры
- •9.2 Металлические спиртомеры
- •9.3 Поверка ареометров
- •9.4 Технические требования
- •10 Лабораторная работа № 26 Фотометр фотоэлектрический кфк – 3
- •10.1 Описание
- •10.2 Устройство и работа фотометра
- •10.3 Устройство и работа составных частей фотометра
- •10.4 Принадлежности и сменные части
- •10.5 Маркирование и упаковка
- •10.6 Указания и условия работы фотометра
- •10.7 Порядок работы
- •10.8 Проверка технического состояния
- •10.9 Возможные неисправности и способы их устранения
- •10.10 Техническое обслуживание
- •10.11 Поверка фотометра кфк - 3
- •11 Лабораторная работа № 27 Ротаметры
- •11.1 Принцип действия
- •11.2 Типы и основные параметры
- •11.3 Ротаметры стеклянные
- •11.4 Металлические ротаметры
- •11.5 Ротаметры электрические
- •11.6 Теоретические основы измерения расхода при помощи ротаметров
- •11.7 Технические требования
- •11.8 Правила приёмки
- •11.9 Методы испытаний
- •11.10 Маркировка, упаковка, транспортирование и хранение
- •11.11 Поверка
- •12 Лабораторная работа № 28 Реометры
- •12.1 Типы и основные параметры
- •12.2 Реометры стеклянные
- •12.3 Технические требования
- •12.4 Правила приёмки
- •12.5 Методы испытания
- •12.6 Маркировка, упаковка, транспортирование и хранение
- •12.7 Градуировка реометров
- •12.8 Поверка
- •13 Раздел 5. Измерение давления
- •14 Лабораторная работа № 29 Манометр с пневматическим преобразователем типа мс-п системы гсп
- •14.1 Цель работы
- •14.2 Общие сведения по измерению давления
- •14.3 Принцип действия и устройство манометра системы гсп типа мс-п
- •14.4 Устройство и работа бесшкального датчика давления типа мс-п системы гсп
- •14.5 Пример отчета по лабораторной работе
- •14.6 Варианты и исходные данные для выполнения лабораторной работы:
- •14.7 Вопросы для самоконтроля
- •15 Лабораторная работа № 30 Поверка манометра типа мэд Введение
- •15.1 Цель работы
- •15.2 Классификация манометров
- •15.3 Общие сведения о манометре мэд
- •15.4 Поверка манометра мэд в комплекте с вторичным прибором эпид
- •15.5 Пример отчета по лабораторной работе
- •15.5 Варианты и исходные данные для выполнения лабораторной работы:
- •15.6 Вопросы для самоконтроля
- •16 Лабораторная работа № 31Деформационный манометр
- •16.1 Цель работы
- •16.2 Назначение. Вид измерений. Область применения
- •16.3 Устройство. Принцип действия
- •16.4 Методика выбора средств измерений. Объект измерений
- •16.5 Суммарная погрешность, её состав. Диапазон измерения
- •16.6 Шесть основных мероприятий перед началом работы
- •16.7 Установка рабочего положения
- •16.8 Указание по безопасности
- •16.9 Пример отчета по лабораторной работе
- •16.10 Вопросы для самоконтроля
- •16.11 Варианты и исходные данные для выполнения лабораторной работы:
- •17 Лабораторная работа № 32 Датчик Метран
- •17.1 Физическая величина. Единица физической величины
- •17.2 Измерение. Виды измерений
- •17.3 Унификация единиц физических величин. Создание метрических мер
- •17.4 Погрешность измерения
- •17.5 Поверка средств измерений
- •17.6 Задачи и значение поверки
- •17.7 Обеспечение единства измерений в России
- •17.8 Правовые основы обеспечения единства измерений
- •17.9 Описание и работа датчика давления Метран-49
- •17.10 Многофункциональный портативный калибратор Метран 510-пкм
- •По защищенности от воздействия окружающей среды калибратор соответствует исполнению 1р54 по гост 14254 – 96 «Степени защиты, обеспечиваемые оболочками (Код ip)».
- •17.11 Программа Archive
- •18 Лабораторная работа № 33Грузопоршневые манометры
- •18.1 Средства измерения давления. Общие сведения
- •18.2 Классификация измерений (Виды измерений)
- •18.3 Выбор метода измерения
- •18.4 Манометр избыточного давления грузопоршневой мп – 2,5
- •18.5 Уровень установочный
- •18.6 Образцовый грузопоршневой манометр мп-60 класса 0,02
- •18.6.2 Инструкция по эксплуатации
- •18.7 Манометр избыточного давления грузопоршневой мп – 600 класса точности 0,05
- •18.7.4 Указание мер безопасности
- •18.7.5 Подготовка манометра к работе
- •18.8 Методы и средства поверки
- •Список использованных источников
- •17 Маркин, н.С. Метрология. Введение в специальность: учебное пособие для техникумов / н.С. Маркин, в.С. Ершов - м.: Издательство стандартов, 1991. – 208 с.
- •Послесловие к лабораторному практикуму по дисциплине «Методы и средства измерений, испытаний и контроля», охватывающее все 3 части
17.8 Правовые основы обеспечения единства измерений
Российская система измерений представляет собой организационные и функциональные объединения участников, проводящих измерения, и потребителей измерительной информации.
В РСИ входят органы и службы, обеспечивающие единство измерений, разработчики, производители (поставщики) и пользователи средствами измерений, действующие в соответствии с российским законодательством.
Основной целью РСИ является содействие экономическому и социальному развитию общества путем защиты от неверных результатов измерений на основе конституционных норм, законов РФ, постановлений правительства РФ и государственных стандартов.
Важнейшим документом, определяющим правовые основы обеспечения единства измерений в России, является Конституция Российской Федерации
Следующим по важности государственным документом в области обеспечения единства измерений является Закон РФ «Об обеспечении единства измерений» принятый 28 апреля 1993 года.
Дальнейшее развитие положения указанного закона получили в Постановлении Правительства РФ « Об организации работ по стандартизации, обеспечении единства измерений, сертификации продукции и услуг» от 12 февраля 1994 года № 100.
В настоящее время закон о сертификации полностью не действует, а заменяется Законом о технологическом регулировании, и все участники российской системы измерений обязаны руководствоваться технологическим регламентом как основным законом.
Российская система измерений РСИ является объективным инструментом для обеспечения оценки качества продукции и услуг через стандарты, метрологическое обеспечение производства, испытания и имеет следующие основы:
- научную - метрология со своими постулатами;
- нормативную – законы, подзаконные акты, стандарты по метрологии и производству измерительной техники;
- техническую – средства измерений соответствующего качества (испытанные и исследованные);
- организационную – Государственная метрологическая служба и метрологические службы юридических и физических лиц.
17.9 Описание и работа датчика давления Метран-49
17.9.1 Назначение
17.9.1.1 Коррозионностойкие датчики давления (в дальнейшем датчики) Метран-49, Метран-49-Ех, Метран-49-Вн предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами и обеспечивают непрерывное преобразование значения измеряемого параметра - давления избыточного, разрежения, давления-разрежения, разности давлений нейтральных и агрессивных сред в унифицированный токовый выходной сигнал дистанционной передачи и цифровой сигнал на базе НАRТ-протокола.
Датчики имеют как обыкновенное, так и взрывозащищенное исполнения.
Датчики Метран-49-Вн, Метран-49-Ех предназначены для установки во взрывоопасных зонах помещений и наружных установок
Датчики относятся к изделиям ГСП.
Датчики предназначены для работы с вторичной регистрирующей и показывающей аппаратурой, регуляторами и другими устройствами автоматики, машинами централизованного контроля и системами управления, воспринимающими стандартные сигналы постоянного тока 0-5 или 0-20 или 4-20 мА и цифрового сигнала на базе НАRТ-протокола.
Рисунок 17.1 – Метран-49-В-ДД
Датчики с НАRТ-протоколом (код МП2, МПЗ) могут передать информацию об измеряемой величине в цифровом виде по двухпроводной линии связи вместе с сигналом постоянного тока 4-20 мА. Этот цифровой сигнал может приниматься и обрабатываться любым устройством, поддерживающим протокол НАRТ. Цифровой выход может также использоваться для связи датчика с портативным ручным НАRТ-коммуникатором или с персональным компьютером через стандартный последовательный порт и дополнительный НАRТ-модем, при этом может выполняться настройка датчика, выбор его основных параметров, перестройка диапазонов измерений, корректировка "нуля" и ряд других операций. НАRТ-протокол допускает в системе наличие двух управляющих устройств: системы управления и ручного коммуникатора. Эти два управляющих устройства имеют разные адреса и следовательно Метран-49 (код МП2, МПЗ) может распознать и выполнить команды каждого из них.
Таким образом, по двухпроводной связи передается два типа сигналов - аналоговый сигнал 4-20 мА и цифровой сигнал на базе протокола НАRТ, который накладывается на аналоговый выходной сигнал датчика, не оказывая на него влияния.
17.9.2 Технические данные
17.9.2.1 Наименование и обозначение датчика, максимальный верхний предел измерений или диапазон измерений модели Ртах, минимальный верхний предел измерений или диапазон измерений модели РМИН, предельно допускаемые рабочие избыточные давления для датчиков ДД, верхние пределы измерений, модель датчика, по ГОСТ 22520-85 – «Датчики давления, разрежения и разности давлений с электрическими аналоговыми выходными сигналами ГСП. Общие технические условия», приведены в таблице 19.1.
Датчики являются многопредельными и настраиваются на верхний предел измерений или диапазон измерений от РМИН до Ртах (таблица 19.1). Датчики могут быть настроены на верхний предел измерений или диапазон измерений по стандартному ряду давлений ГОСТ 22520 - 85 или на верхний предел или диапазон измерений, отличающийся от стандартного.
При выпуске предприятием-изготовителем датчик настраивается (датчики с кодом предела допускаемой основной погрешности 015) или программируется (датчики с кодом предела допускаемой основной погрешности 025, 050 ,100) на верхний предел измерений в соответствии с заказом и выбирается из значений, указанных в таблице 17.1.
Таблица 17.1- Верхние пределы измерений по ГОСТ 22520 – 85
Код предела допускаемой основной погрешности |
Предел допускаемой основной погрешности, % |
Примеча-ние |
|||
Рmax |
Рmin>PвРмах/6 |
Рmin/6>PвРмах/10 |
Рmin/10>PвРмах/25 |
||
015 |
0,15 |
0,2 |
0,25* |
0,14+0,02 Рmax/Pв |
Для всех моделей кроме 9440, 9140, 9240, 9340 |
025 |
0,25 |
0,4 |
0,2+0,025 Рmax/Pв |
|
|
050 |
0,5 |
|
0,4+0,02 Рmax/Pв |
|
|
100 |
1,0 1,5 |
|
|||
П р и м е ч а н и я: 1 - Рmax – максимальный верхний предел измерений для данной модели датчика (суммы абсолютных максимальных значений верхних пределов измерений избыточного давления (Ризб.давл) и разрежения (Рраз) для датчиков ДИВ).Рв – верхний предел измерений датчика выбранный в соответствии с графой 7 таблиц 3,4 и графой 8 таблицы 6, для датчиков ДИВ – сумму абсолютных значений верхних пределов измерений избыточного давления и разрежения 9 графы 7 и 8 таблицы 5)
2 - % = 0,4% - Предел допускаемой основной погрешности
для моделей 9120, 9220, 9320, 9420, 9130, 9230, 9430.
17.9.2.2 Датчики Метран – 49 всех исполнений имеют линейно-возрастающую или линейно-убывающую зависимость выходного сигнала от входной измеряемой величины (давления).
Датчики разности давлений, предназначенные в соответствии с заказом для измерения расхода жидкости, газа или пара по величине переменного перепада давления на сужающем устройстве трубопровода, могут иметь зависимость выходного сигнала пропорциональную корню квадратному из значений входной измеряемой величины - перепада давления.
Рисунок 17.2 - Датчики Метран-49
17.9.3 Устройство и работа датчика
17.9.3.1 Датчик состоит из преобразователя давления (в дальнейшем - сенсорный блок) и электронного преобразователя. Датчики различных параметров имеют унифицированный электронный преобразователь.
Измеряемый параметр подается в камеру сенсорного блока и линейно преобразуется в деформацию чувствительного элемента, вызывая при этом изменение электрического сопротивления тензорезисторов тензопреобразователя, размещенного в сенсорном блоке.
Электронный преобразователь датчика преобразует это изменение сопротивления в токовый выходной сигнал.
Чувствительным элементом тензопреобразователя является пластина из монокристаллического сапфира с кремниевыми пленочными тензорезисторами (структура КНС), прочно соединенная с металлической мембраной тензопреобразователя.
Взрывоопасная зона Взрывобезопасная зона
П р и м е ч а н и е:
1 БП – блок питания (например Карат-22, Метран-602, Метран – 604)
2 Rс – суммарное сопротивление всех нагрузок в системе управления определяется параметрами барьера, но не менее 250 Ом
3 Барьер искрозащиты, например D1010S, D1010D, 9303/13
Рисунок 17.3 - Электронный микропроцессорный преобразователь с индикатором (МПЗ)
Рисунок 17.4 - Сенсорный блок преобразователя
Сенсорный блок преобразователя состоит из корпуса 1, в верхней части которого закреплен тензопреобразователь 2.
К нижней части корпуса приварена разделительная мембрана 3. Внутренняя часть корпуса между мембраной 3 и тензопреобразователем 2 заполнена жидкостью.
К верхней части корпуса крепится электронный преобразователь 4.
Измеряемое давление воздействует на разделительную мембрану 3 и вызывает ее прогиб. Давление через жидкость передается на измерительную мембрану тензопреобразователя 2 и вызывает ее деформацию.
Электрический сигнал, возникающий от деформации измерительной мембраны, передается на электронный преобразователь 4 и преобразуется в стандартный токовый выходной сигнал.
17.9.3.2 Функционально электронный преобразователь состоит из аналого-цифрового преобразователя (АЦП), источника опорного напряжения, блока памяти АЦП, микроконтроллера с блоком памяти, цифро-аналогового преобразователя (ЦАП), стабилизатора напряжения, фильтра радиопомех и блока регулировки и установки параметров для преобразователя с кодом МП, МП1 или НАRТ-модема для преобразователей с кодом МП2, МПЗ. Кроме того в электронные преобразова-
тели с кодом МП1 и МПЗ входит ЖКИ.
Конструктивно АЦП, источник опорного напряжения и блок памяти АЦП размещаются на плате АЦП, которая объединяется с измерительным блоком в сборочную единицу - сенсорный блок.
Остальные элементы функциональной схемы размещаются в корпусе электронного преобразователя.
Электронные преобразователи МП2, МПЗ и МП, МП1 размещены внутри корпуса 10. Корпус закрыт крышками 5, 11, уплотненными резиновыми кольцами. Крышки датчиков Метран-49-Вн, Метран-49-Ех стопорятся скобой 13с установкой пломбы. Преобразователь имеет сальниковый ввод 7 или вилку штепсельного разъема (в зависимости от заказа, для датчиков Метран-49, Метран-49-Ех), клеммную колодку 6 для подсоединения жил кабеля, винт 12 для подсоединения экрана, в случае использования экранированного кабеля, болт 8 для заземления корпуса, внешнюю кнопку 15 для корректировки начального значения выходного сигнала.
Плата АЦП принимает аналоговые сигналы преобразователя давления, пропорциональные входной измеряемой величине (давлению) (11р) и температуре (Ц), и преобразовывает их в цифровые коды. Энергонезависимая память предназначена для хранения коэффициентов коррекции характеристик сенсорного блока и других данных о 33 сенсорном блоке.
Микроконтроллер, установленный на микропроцессорной плате, принимает цифровые сигналы с платы АЦП вместе с коэффициентами коррекции, производит коррекцию и линеаризацию характеристики сенсорного блока, вычисляет скорректированное значение выходного сигнала датчика и передаёт его в цифро-аналоговый преобразователь (ЦАП). Цифро-аналоговый преобразователь преобразует цифровой сигнал, поступающий с микроконтроллера, в выходной аналоговый токовый сигнал.
Блок регулирования и установки параметров предназначен для изменения параметров датчика. Элементами настройки являются кнопочные переключатели, расположенные под крышкой.
При помощи кнопочных переключателей блока управления и регулирования параметров и цифрового индикатора можно работать с датчиком в следующих режимах:
1) Контроль измеряемого давления;
2) Контроль и настройка параметров;
3) Калибровка датчика.
Параметры и символы режимов настроек датчика отображаются на дисплее индикатора.
Датчик проводит непрерывную самодиагностику. В случае возникновения неисправности датчик формирует предупредительный аналоговый сигнал. Для контроля, настройки параметров, выбора режимов работы и калибровки датчиков используется индикаторное устройство.
Индикаторное устройство может быть установлено в корпусе электронного преобразователя и подключено к плате микропроцессорного электронного преобразователя (датчик с кодом МП1, МПЗ).
Индикаторное устройство может быть выполнено в виде отдельного устройства выносной индикатор (ВИ) и подключаться с помощью разъема (для датчиков с микропроцессорным электронным преобразователем МП).
Примечание - Применение в датчиках Метран-49-Вн с кодом МП выносных индикаторных устройств возможно только с учетом особых условий их эксплуатации.
На дисплее индикатора датчика с кодом МП1, МПЗ или на дисплее ВИ или НАRТ-коммуникатора в режиме измерения давления отображается величина измеряемого давления в цифровом виде в установленных при настройке единицах измерения или в процентах от калиброванного диапазона измерений.
Электрическая схема электронного преобразователя МП, МП1, МП2, МПЗ позволяет осуществлять контроль выходного сигнала без разрыва сигнальной цепи. Цепь для подключения контрольного прибора выведена на клеммы «тест» 1 и 2. Измерение производится вольтметром, максимальному выходному току (20 мА или 5мА) соответствует напряжение 200 мВ.
Погрешность контроля выходного сигнала при контроле без разрыва сигнальной цепи не более 2 %.
Общие сведения о коммуникаторе HАRТ
Ручной коммуникатор HАRТ представляет собой портативный контроллер и осуществляет обмен данными с любым устройством, поддерживающим HАRТ протокол, при подсоединении к любым клеммам цепи 4-20 мА при условии, что сопротивление нагрузки между коммуникатором и источником питания составляет не менее 250 Ом. Коммуникатор использует принцип частотной модуляции для передачи цифрового сигнала. Эта технология заключается в наложении высокочастотного цифрового коммуникационного сигнала на стандартный токовый сигнал датчика 4-20 мА.
17.9.4 Измерение параметров, регулирование и настройка датчиков с кодом МП2, МПЗ
Измерения параметров, регулирование и настройка датчиков с кодом МП2, МПЗ могут проводиться как с помощью системных средств АСУТП, так и НАRТ-коммуникатором (Метран-650, НС-275).
Датчик Метран-49 полностью соответствует протоколу HАRТ, поэтому работать с ним можно при помощи любого HАRТ сертифицированного прибора.
Для измерения параметров, регулирования и настройки датчиков при помощи системных средств АСУТП рекомендуется использовать НАRТ-модем (например, НАRТ/К8232) и программное обеспечение Н-МА8ТЕК разработки ПГ «Метран», которое поставляется по отдельному заказу.
В датчиках можно выполнить калибровку «нуля» внешней кнопкой, расположенной на корпусе электронного преобразователя. Операция калибровки «нуля» внешней кнопкой выполняется при давлении на входе в датчик, равном нулю.
17.9.5 Работа с коммуникатором Метран – 650
Коммуникатор Метран – 650 позволяет использовать возможности датчиков Метран-49 в аналоговых АСУТП, которые не поддерживают протокол НАКТ.
Коммуникатор взаимодействует с датчиком по протоколу НАRТ. Этот протокол использует принцип частотной модуляции. НАRТ - составляющая не влияет на сигнал 4 - 20 мА, т. к. синусоида, формирующая цифровой сигнал, имеет небольшую амплитуду(±0,5 мА), а ее среднее значение равно нулю.
Коммуникатор может быть подключен к датчику в любой точке токовой петли: на пульте управления, измерительном стенде или непосредственно к датчику.
