
- •Желілердің архитектурасы және стандартизацисы osi протоколдарының стектері.
- •Желілер классификациясы.
- •Территориалды таралуы бойынша классификациясы
- •Лсж (lan) архитектурасы. Cтандартты топология және бөлуші орта.
- •Локальды желілердің протоколдар стегі.
- •7. Кадрды орта арқылы қабылдау және тарату
- •9. Ieee 802.Х стандартының құрылымы.
- •10. Тарату ортасына қатынасу әдістері.
- •13. Ethernet кадрларының форматтары.
- •14. Ethernet адрестелуі.
- •15. Байланыс желілеріндегі коммутация әдістері.Хабарлама коммутациясы.Десте коммутациясы..Маркерлік қатынауы бар желілер.
- •16. Fast Ethernet желісінің конфигурациясы.
- •17.Fast Ethernet технологиясының физикалық деңгейі.
- •100Vg-AnyLan технолгоиясының ерекшіліктері.
- •20. Маркерлік қатынасуы бар желілері.
- •21. Маркерлік қатынасуы бар желілері. Ieee 802.5.
- •22. Ethernet кадрларының форматтары.
- •23. Локальды және глобальды желілерінің салыстыру сараптамасы.
- •26.Стандарт х.25. Желінің адрестелуі.
- •Архитектура х25. Протоколдар деңгейі. Тұрақты немсе коммутацияланатын виртуалды каналдар.
- •Коммутация тәсілдері. Виртуалды каналдар технологиясы.
- •Коммутация каналов
- •Коммутация сообщений
- •Коммутация пакетов
- •Х.25 протоколы бойынша қосылу схемасы.
- •31. Арна деңгейіндегі lapb протоколы.
- •34Frame Relay желісіндегі қызмет көрсету сапасы
- •Frame Relay желісіндегі потоколдар стегі.
- •Глобальды виртуалды каналдар механизімі.
- •Атм технологиясы
- •Атм протоколының стегі.
- •Атм ұяшықтарының форматы.
- •42, Атм технологиясының класстары мен деңгейлері.
- •43.Атм и модель osi
- •Стек atm
- •Три основных класса ip-адресов
- •Формат iPv4
- •Формат iPv6
- •49.Tсp протоколы.
- •51. Udp, tcp протоколдар салыстыру сараптамасы.
- •52 Сегметтеу
- •53. Фрагменттеу.
- •54. Желіаралық қатынастарының принциптері.
- •Что такое h.323?
- •Версии h.323
- •Стандарты семейства h.32xСтандарт h.323 входит в семейство рекомендаций h.32x, описывающих порядок организации мультимедиа-связи в сетях различных типов:
- •Основные компоненты h.323
- •Другие компоненты и протоколы
- •58. Sip протоколымен жалғастыруды орнату сценариі
- •59Ip – желісінің маршрутталуы. Ospf протоколы
- •60. Hdlc каналдық деңгей протоколы.
- •66. Наблюдать за этой страницей
59Ip – желісінің маршрутталуы. Ospf протоколы
Internet Protocol (IP, досл. «межсетевой протокол») — маршрутизируемый протокол сетевого уровня стека TCP/IP. Именно IP стал тем протоколом, который объединил отдельные компьютерные сети во всемирную сеть Интернет. Неотъемлемой частью протокола является адресация сети
IP объединяет сегменты сети в единую сеть, обеспечивая доставку пакетов данных между любыми узлами сети через произвольное число промежуточных узлов (маршрутизаторов). Он классифицируется как протокол третьего уровня по сетевой модели OSI. IP не гарантирует надёжной доставки пакета до адресата — в частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться (приходят две копии одного пакета), оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прийти вовсе. Гарантию безошибочной доставки пакетов дают некоторые протоколы более высокого уровня —транспортного уровня сетевой модели OSI, — например, TCP, которые используют IP в качестве транспорта.
IP-пакет — форматированный блок информации, передаваемый по компьютерной сети, структура которого определена протоколом IP. В отличие от них, соединения компьютерных сетей, которые не поддерживают IP-пакеты, такие как традиционные соединения типа «точка-точка» в телекоммуникациях, просто передают данные в виде последовательности байтов, символов или битов. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.
OSPF (англ. Open Shortest Path First) — протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала (link-state technology) и использующий для нахождения кратчайшего пути алгоритм Дейкстры.
60. Hdlc каналдық деңгей протоколы.
Протокол канального уровня HDLC (Higher-levelDataLinkControl), разработанный МОС, является бит-ориентированным протоколом конвейерного типа. Он эквивалентен протоколу ADCCPАмериканского национального института стандартов (ANSI). Подмножество HDLC используется в качестве канального протокола X.25 МККТТ. Различные промышленные фирмы пользуются своими производными от HDLC, среди которых наиболее известен протокол SDLC фирмы IBM. Протокол HDLC становится наиболее принятым протоколом канального уровня для распределенной обработки и компьютерных сетей. Подробное описание протокола можно найти в [18].
Кадр в протоколе HDLC имеет следующую структуру:
ФЛАГ АДРЕС УПРАВЛЕНИЕ ИНФОРМАЦИЯ КПП ФЛАГ
8 бит 8 бит 8/16 бит N бит 16 бит 8 бит
Этот формат кадра называют информационным. Имеется также управляющий формат, который отличается от информационного тем, что не имеет поля информации. Для обнаружения ошибок в кадрах используется кадровая проверочная последовательность (КПП). В адресном поле записывается адрес вторичной станции или направление передачи кадра по каналу.
В HDLC имеется три типа кадров: информационный (I-кадр), cупервизорный (или управляющий) (S-кадр) и ненумерованный (U-кадр). Полный перечень кадров представлен в табл.
ARP (англ. Address Resolution Protocol — протокол определения адреса) — протокол в компьютерных сетях, предназначенный для определения MAC-адреса по известному IP-адресу.
Рассмотрим суть функционирования ARP на простом примере. Компьютер А (IP-адрес 10.0.0.1) и компьютер Б (IP-адрес 10.22.22.2) соединены сетью Ethernet. Компьютер А желает переслать пакет данных на компьютер Б, IP-адрес компьютера Б ему известен. Однако сеть Ethernet, которой они соединены, не работает с IP-адресами. Поэтому компьютеру А для осуществления передачи через Ethernet требуется узнать адрес компьютера Б в сети Ethernet (MAC-адрес в терминах Ethernet). Для этой задачи и используется протокол ARP. По этому протоколу компьютер А отправляет широковещательный запрос, адресованный всем компьютерам в одном с нимшироковещательном домене. Суть запроса: «компьютер с IP-адресом 10.22.22.2, сообщите свой MAC-адрес компьютеру с IP-адресом 10.0.0.1». Сеть Ethernet доставляет этот запрос всем устройствам в том же сегменте Ethernet, в том числе и компьютеру Б. Компьютер Б отвечает компьютеру А на запрос и сообщает свой MAC-адрес (напр. 00:ea:d1:11:f1:11) Теперь, получив MAC-адрес компьютера Б, компьютер А может передавать ему любые данные через сеть Ethernet.
-адресом. Ниже приведен пример упрощенной ARP-таблицы.
RARP
RARP (англ. Reverse Address Resolution Protocol — Обратный протокол преобразования адресов) — протокол сетевого уровня модели OSI, выполняет обратное отображение адресов, то есть преобразует физический адрес в IP-адрес.
Протокол применяется во время загрузки узла (например компьютера), когда он посылает групповое сообщение-запрос со своим физическим адресом. Сервер принимает это сообщение и просматривает свои таблицы (либо перенаправляет запрос куда-либо ещё) в поисках соответствующего физическому, IP-адреса. После обнаружения найденный адрес отсылается обратно на запросивший его узел. Другие станции также могут «слышать» этот диалог и локально сохранить эту информацию в своих ARP-таблицах.
62. BGP (англ. Border Gateway Protocol, протокол граничного шлюза) — основной протокол динамической маршрутизации вИнтернете.
Протокол BGP предназначен для обмена информацией о достижимости подсетей между автономными системами (АС), то есть группами маршрутизаторов под единым техническим управлением, использующими протокол внутридоменной маршрутизации для определения маршрутов внутри себя и протокол междоменной маршрутизации для определения маршрутов доставки пакетов в другие АС. Передаваемая информация включает в себя список АС, к которым имеется доступ через данную систему. Выбор наилучших маршрутов осуществляет исходя из правил, принятых в сети.
BGP поддерживает бесклассовую адресацию и использует суммирование маршрутов для уменьшения таблиц маршрутизации. С 1994 года действует четвёртая версия протокола, все предыдущие версии являются устаревшими.
BGP, наряду с DNS, является одним из главных механизмов, обеспечивающих функционирование Интернета.
BGP является протоколом прикладного уровня и функционирует поверх протокола транспортного уровня TCP (порт 179). После установки соединения передаётся информация обо всех маршрутах, предназначенных для экспорта. В дальнейшем передаётся только информация об изменениях в таблицах маршрутизации. При закрытии соединения удаляются все маршруты, информация о которых передана противоположной стороной.
Сообщение BGP начинается с заголовка, после которого, в зависимости от типа сообщения, могут следовать данные. Максимальная длина сообщения — 4096 октетов, минимальная — 19 октетов. Заголовок сообщения содержит следующие поля:
Маркер (16 октетов) — используется для совместимости, должен быть заполнен единицами;
Длина (2 октета) — длина сообщения в октетах, включая заголовок;
Тип (1 октет):
1 — Открытие;
2 — Обновление информации;
3 — Оповещение;
4 — Сохранение соединения.
63. MGCP или Media Gateway Control Protocol дословно — Протокол контроля медиашлюзов. Является протоколом связи в распределённых VoIP системах передачи голоса по протоколу IP.
MGCP описан в RFC 3435, который заменил устаревший к настоящему времени RFC 2705, заменивший, в свою очередь, Simple Gateway Control Protocol (SGCP).
Сходный протокол для тех же целей Megaco, совместная продукция IETF (RFC 3525) и ITU (рекомендации H.248-1). Оба протокола описаны единым аппаратно-программным интерфейсом (API) Архитектура и требования MGCP вRFC 2805.
Signaling Gateway (SG)
Шлюз сигнализации - обеспечивает доставку сигнальной информации, поступающей со стороны ТфОП, к контроллеру шлюзов и перенос сигнальной информации в обратном направлении.
На практике сигнальный шлюз (SG) и медиашлюз (MG) подключены в один физический коммутатор, но это совсем не обязательно. Call Агент не использует MGCP для контроля сигнального шлюза (SG), для этих целей — обратной связи между сигнальным шлюзом (SG) и Агентом используются протоколы SIGTRAN.
Media Gateway (MG)
Медиашлюз выполняет функции преобразования речевой информации, поступающей со стороны ТфОП в голосовых каналах с постоянной скоростью передачи, в вид, пригодный для передачи по сетям с маршрутизацией пакетов IP (кодирование и упаковку речевой информации в пакеты RTP, и далее в UDP и IP) а также обратное преобразование).
Медиашлюз использует протокол MGCP для сигнализации событий, таких как информация что трубка положена/снята или набираемые цифры вызываемого номера (донабор).
Call Agent
Call Агент - контроллер шлюзов, выполняет функции управления шлюзами, который использует протокол MGCP чтобы сообщать медиашлюзу:
какие события направлять Call Агенту
каким образом оконечные устройства должны соединяться друг с другом
какие тональные сигналы вызова должны воспроизводится на оконечных устройствах
64. DLCI – это «Data Link Connection Identifier», идентификатор соединения. У провайдера есть большая сеть, через которую проходит множество разных соединений (Virtual Circuit-ов), каждое направление по каждому из них имеет свой идентификатор – DLCI. Причём, DLCI имеет локальное значение, так что, если смотреть на приведённый рисунок, то первый же Frame Relay коммутатор «А», получив фрейм с DLCI 201 вполне может поменять его на другое значение, так как само число 201 имеет смысл только в контексте маленького участка сети между двумя соседними коммутаторами. Благодаря этому одни и те же номера DLCI можно использовать в разных частях сети, главное, чтобы все настройки на коммутаторах были согласованы между собой. DLCI Фактически это адрес канального уровня, то есть для Frame Relay DLCI – это способ идентификации общающихся устройств, как, например, MAC адрес для Ethernet. Только тут речь идёт скорее не об устройствах, а о каналах. В общем всё это для общего развития, а практически надо знать одно, с каждого из наших устройств, на границе облака, до каждого другого (до которого мы арендовали сеть от этого) ведёт один конкретный DLCI, который нам надо настроить.
65.NGN (от англ. next generation networks, new generation networks — сети следующего/нового поколения) — мультисервисные сети связи, ядром которых являются опорные IP-сети, поддерживающие полную или частичную интеграцию услуг передачи речи, данных и мультимедиа. Реализует принцип конвергенции услуг электросвязи. Предпосылки появления NGNПравить Изначально для передачи различных типов информации строились отдельные (ведомственные) сети связи: телефонная сеть, телеграфная сеть, сети передачи данных и пр. Во второй половине XX века появилась идея объединить все ведомственные сети связи в одну. Таким образом была создана концепция сетей ISDN. Объединяющей сетью ISDN-сети является телефонная сеть общего пользования. В конце XX века из-за различных причин (дороговизна ISDN-оборудования, бурное развитие IP-сетей, появление новых приложений и услуг) идея формирования глобальной сети ISDN потерпела неудачу. На смену концепции сетей ISDN, пришла концепция сетей следующего поколения — NGN. В отличие от сети ISDN, сеть NGN опирается на сеть передачи данных на базе протокола IP. Согласно простейшему определению, сеть NGN — это открытая, стандартная пакетная инфраструктура, которая способна эффективно поддерживать всю гамму существующих приложений и услуг, обеспечивая необходимую масштабируемость и гибкость, позволяя реагировать на новые требования по функциональности и пропускной способности.