
- •Желілердің архитектурасы және стандартизацисы osi протоколдарының стектері.
- •Желілер классификациясы.
- •Территориалды таралуы бойынша классификациясы
- •Лсж (lan) архитектурасы. Cтандартты топология және бөлуші орта.
- •Локальды желілердің протоколдар стегі.
- •7. Кадрды орта арқылы қабылдау және тарату
- •9. Ieee 802.Х стандартының құрылымы.
- •10. Тарату ортасына қатынасу әдістері.
- •13. Ethernet кадрларының форматтары.
- •14. Ethernet адрестелуі.
- •15. Байланыс желілеріндегі коммутация әдістері.Хабарлама коммутациясы.Десте коммутациясы..Маркерлік қатынауы бар желілер.
- •16. Fast Ethernet желісінің конфигурациясы.
- •17.Fast Ethernet технологиясының физикалық деңгейі.
- •100Vg-AnyLan технолгоиясының ерекшіліктері.
- •20. Маркерлік қатынасуы бар желілері.
- •21. Маркерлік қатынасуы бар желілері. Ieee 802.5.
- •22. Ethernet кадрларының форматтары.
- •23. Локальды және глобальды желілерінің салыстыру сараптамасы.
- •26.Стандарт х.25. Желінің адрестелуі.
- •Архитектура х25. Протоколдар деңгейі. Тұрақты немсе коммутацияланатын виртуалды каналдар.
- •Коммутация тәсілдері. Виртуалды каналдар технологиясы.
- •Коммутация каналов
- •Коммутация сообщений
- •Коммутация пакетов
- •Х.25 протоколы бойынша қосылу схемасы.
- •31. Арна деңгейіндегі lapb протоколы.
- •34Frame Relay желісіндегі қызмет көрсету сапасы
- •Frame Relay желісіндегі потоколдар стегі.
- •Глобальды виртуалды каналдар механизімі.
- •Атм технологиясы
- •Атм протоколының стегі.
- •Атм ұяшықтарының форматы.
- •42, Атм технологиясының класстары мен деңгейлері.
- •43.Атм и модель osi
- •Стек atm
- •Три основных класса ip-адресов
- •Формат iPv4
- •Формат iPv6
- •49.Tсp протоколы.
- •51. Udp, tcp протоколдар салыстыру сараптамасы.
- •52 Сегметтеу
- •53. Фрагменттеу.
- •54. Желіаралық қатынастарының принциптері.
- •Что такое h.323?
- •Версии h.323
- •Стандарты семейства h.32xСтандарт h.323 входит в семейство рекомендаций h.32x, описывающих порядок организации мультимедиа-связи в сетях различных типов:
- •Основные компоненты h.323
- •Другие компоненты и протоколы
- •58. Sip протоколымен жалғастыруды орнату сценариі
- •59Ip – желісінің маршрутталуы. Ospf протоколы
- •60. Hdlc каналдық деңгей протоколы.
- •66. Наблюдать за этой страницей
31. Арна деңгейіндегі lapb протоколы.
На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-B устанавливается соединение между пользовательским оборудованием DTE (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами. Сетевой уровень X25/3 (в стандарте он назван не сетевым, а пакетным ypoвнем) реализуется с использованием 14 различных типов пакетов, по назначению аналогичных типам кадров протокола LAP-B. Так как надежную передачу данных обеспечивает протокол LAP-B, протокол Х.25/3 выполняет функции маршрутизации пакетов, установления и разрыва виртуального канала между конечными абонентами сети и управления потоком пакетов. После установления соединения на канальном уровне конечный узел должен установить виртуальное соединение с другим конечным узлом сети. Для этого он в кадрах LAP-B посылает пакет Call Request протокола Х.25. После установления виртуального канала конечные узлы обмениваются пакетами другого формата - формата пакетов данных (пакет Data). Пакет данных не имеет поля, которое бы определяло тип переносимых в пакете данных. Для устранения этого недостатка первый байт в поле данных всегда интерпретируется как признак типа данных. Коммутаторы (ЦКП) сетей Х.25 представляют собой гораздо более простые и дешевые устройства по сравнению с маршрутизаторами сетей TCP/IP. Это объясняется тем, что они не поддерживают процедур обмена маршрутной информацией и нахождения оптимальных маршрутов, а также не выполняют преобразования форматов кадров канальных протоколов. Производительность коммутаторов Х.25 оказывается обычно невысокой - несколько тысяч пакетов в секунду. Гарантий пропускной способности сеть Х.25 не дает. Максимум, что может сделать сеть, - это приоритезировать трафик отдельных виртуальных каналов. Приоритет канала указывается в запросе на установление соединения в поле услуг. Протоколы сетей Х.25 были специально разработаны для низкоскоростных линий с высоким уровнем помех.
32. Frame Relay желісі.
Frame Relay «жақсы» байланыс арнасымен бірқалыпты емес компьютерлік трафикті тарату үшін әдейі құрастырылған. Frame relay (англ. «ретрансляция кадров», FR) — протокол канального уровня сетевой модели OSI. Служба коммутации пакетов Frame Relay в настоящее время широко распространена во всём мире. Максимальная скорость, допускаемая протоколом FR — 34,368 мегабит/сек (каналы E3). Коммутация: точка-точка.
Frame Relay был создан в начале 1990-х в качестве замены протоколу X.25 для быстрых надёжных каналов связи, технология FR архитектурно основывалась на X.25 и во многом сходна с этим протоколом, однако в отличие от X.25, рассчитанного на линии с достаточно высокой частотой ошибок, FR изначально ориентировался на физические линии с низкой частотой ошибок, и поэтому большая часть механизмов коррекции ошибок X.25 в состав стандарта FR не вошла. В разработке спецификации принимали участие многие организации; многочисленные поставщики поддерживают каждую из существующих реализаций, производя соответствующее аппаратное и программное обеспечение.
Frame relay обеспечивает множество независимых виртуальных каналов (Virtual Circuits, VC)[en] в одной линии связи, идентифицируемых в FR-сети по идентификаторам подключения к соединению (DLCI[en]). Вместо средств управления потоком включает функции извещения о перегрузках в сети. Возможно назначение минимальной гарантированной скорости (CIR) для каждого виртуального канала.
В основном применяется при построении территориально распределённых корпоративных сетей, а также в составе решений, связанных с обеспечением гарантированной пропускной способности канала передачи данных (VoIP, видеоконференции и т. п.).
Для передачи данных от отправителя к получателю в сети Frame Relay создаются виртуальные каналы, VC (англ. Virtual Circuit), которые бывают двух видов:
постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;
коммутируемый виртуальный канал, SVC (Switched Virtual Circuit), который создаётся между двумя точками непосредственно перед передачей данных и разрывается после окончания сеанса связи
CIR (англ. Committed Information Rate) — гарантированная полоса пропускания виртуального канала PVC в сетях FR.
В первоначальном наборе стандартов (ANSI T1S1) CIR как отдельный параметр отсутствует, но для отдельного виртуального канала были определены параметры B(c) (bits committed, Committed Burst Size), B(e) (bits excess) и T(c) (Committed Rate Measurement Interval). B(c) при этом определяется как количество бит, гарантированно передаваемых за время T(c) даже при перегрузке сети, B(e) — максимальное количество бит, которые могут быть переданы за время T(c) при недогрузке сети, то есть без гарантии доставки: заголовки пакетов, отправляемые после превышения B(c) метятся битом DE (discard eligible, аналогичен CLP в ATM) и в случае возникновения в сети перегрузки уничтожаются на коммутаторах перегруженного участка.
Таким образом, для виртуального канала могут быть определены две полосы пропускания:
CIR=B(c)/T(c) — гарантированная полоса пропускания;
EIR=B(e)/T(c) — максимальная негарантированная полоса пропускания (добавляется возможный дополнительный объем трафика).
33. frame relay и x.25 желілерінің сараптамалары.
Frame Relay первоначально замышлялся как протокол для использования в интерфейсах ISDN, и исходные предложения, представленные в CCITT в 1984 г., преследовали эту цель. Была также предпринята работа над Frame Relay в аккредитованном ANSI комитете по стандартам T1S1 в США.
Крупное событие в истории Frame Relay произошло в 1990 г., когда Cisco Systems, StrataCom, Northern Telecom и Digital Equipment Corporation образовали консорциум, чтобы сосредоточить усилия на разработке технологии Frame Relay и ускорить появление изделий Frame Relay, обеспечивающих взаимодействие сетей. Консорциум разработал спецификацию, отвечающую требованиям базового протокола Frame Relay, рассмотренного в T1S1 и CCITT; однако он расширил ее, включив характеристики, обеспечивающие дополнительные возможности для комплексных окружений межсетевого об'единения. Эти дополнения к Frame Relay называют обобщенно local management interface(LMI) (интерфейс управления локальной сетью).
Основы технологии
Frame Relay обеспечивает возможность передачи данных с коммутацией пакетов через интерфейс между устройствами пользователя (например, маршрутизаторами, мостами, главными вычислительными машинами) и оборудованием сети (например, переключающими узлами). Устройства пользователя часто называют терминальным оборудованием (DTE), в то время как сетевое оборудование, которое обеспечивает согласование с DTE, часто называют устройством завершения работы информационной цепи (DCE). Сеть, обеспечивающая интерфейс Frame Relay, может быть либо общедоступная сеть передачи данных и использованием несущей, либо сеть с оборудованием, находящимся в частном владении, которая обслуживает отдельное предприятие.
В роли сетевого интерфейса, Frame Relay является таким же типом протокола, что и Х.25 (смотри Главу 13 "Х.25"). Однако Frame Relay значительно отличается от Х.25 по своим функциональным возможностям и по формату. В частности, Frame Relay является протоколом для линии с большим потоком информации, обеспечивая более высокую производительность и эффективность.
В роли интерфейса между оборудованием пользователя и сети, Frame Relay обеспечивает средства для мультиплексирования большого числа логических информационных диалогов (называемых виртуальными цепями) через один физический канал передачи, которое выполняется с помощью статистики. Это отличает его от систем, использующих только технику временного мультиплексирования (TDM) для поддержания множества информационных потоков. Статистическое мультиплексирование Frame Relay обеспечивает более гибкое и эффективное использование доступной полосы пропускания. Оно может использоваться без применения техники TDM или как дополнительное средство для каналов, уже снабженных системами TDM.