
- •Законы — начала термодинамики
- •Основные формулы термодинамики Условные обозначения
- •Формулы термодинамики идеального газа
- •Параметры состояния рабочего тела и их определение
- •Законы Бойля-Мариотта, Гей-Люссака, Шарля
- •Теплоёмкость газов Массовая, объёмная и мольная удельные теплоёмкости
- •2.2.Средняя и истинная теплоёмкости
- •2.3.Теплоёмкости при постоянном объёме и давлении
- •2.4. Таблицы теплоёмкости
- •2.5.Теплоёмкость смеси рабочих тел (газовой смеси)
- •Первый закон термодинамики
- •3.1.Сущность первого закона термодинамики
- •3.2. Аналитическое выражение первого закона термодинамики для цикла и разомкнутого процесса
- •3.3. Уравнение первого закона термодинамики для движущегося рабочего тела
- •Тепло. Определение.
- •Второй Закон Термодинамики
- •[Править] Ограничения
- •[Править] Второе начало термодинамики и «тепловая смерть Вселенной»
- •[Править] Энтропия и критика эволюционизма
- •Классификация компрессоров
- •Кпд цикла
- •Процессы
- •Применение
- •Обратный цикл Ренкина
- •Способы повышения экономичности цикла Ренкина
- •Закон теплопроводности Фурье
- •Коэффициент теплопроводности вакуума
- •Связь с электропроводностью
- •Коэффициент теплопроводности газов
- •Обобщения закона Фурье
- •Коэффициенты теплопроводности различных веществ
- •Теплообмен излучением Основные понятия и определения
- •11.2.Законы теплового излучения
- •11.3.Теплообмен излучением между телами, разделёнными прозрачной средой
- •11.4.Излучение газов
- •21 Теплообменные аппараты
- •21.3 Основы расчета теплообменников
- •21.4 Гидравлический расчет та
- •Единицы измерения
- •Лесоводство
- •Эквивалент галлона бензина
- •Примеры
- •Охрана земель и меры по защите почв
- •Охрана лесов
- •Охрана окружающей среды в религии Буддизм
- •Теплосиловые установки
Классификация компрессоров
Компрессор – устройство для повышения давления и перемещения газов. При работе компрессора происходит преобразование электрической энергии в энергию сжатого вещества (газа).
Компрессоры имеют большое разнообразие конструкций и типов, различаются по давлению, производительности, сжимаемой среде, условиям окружающей среды.
Компрессоры используются практически во всех отраслях производства:
в энергетике
в газовой отрасли (агрессивные и взрывоопасные газы)
в нефтехимической промышленности
в химической отрасли
в металлургии
в электрохимической промышленности
в различных добывающих отраслях и т. д.
В зависимости от назначения компрессоры классифицируются по отрасли производства, для которой они предназначены (химические, энергетические, общего назначения и т.д.)
Различают компрессоры и по роду сжимаемого газа - воздушный, кислородный, хлорный, азотный, гелиевый и т.д.
Разделяют компрессоры по конечному давлению:
вакуум-компрессоры – машины, которые откачивают газ из пространства с давлением ниже атмосферного или выше;
компрессоры низкого давления - предназначены для нагнетания газа при давлении от 0,15 до 1,2 МПа;
среднего давления – давление от 1,2 до 10 МПа;
высокого давления – от 10 до 100 МПа;
сверхвысокого давления - предназначены для сжатия газа выше 100 МПа.
Кроме того, различают компрессоры по способу отвода тепла (воздушное или водяное охлаждение) и по типу приводного двигателя.
По особенностям самого процесса повышения давления, т.е. принципу действия устройства компрессоры подразделяются на объемные и лопастные.
Объемный компрессор – устройство, в котором процесс сжатия происходит в рабочих камерах, изменение давления происходит за счет периодического изменения объема этих камер, попеременно сообщающихся с входом и выходом компрессора. Объемные компрессоры можно разделить по геометрической форме рабочих органов и способу изменения объема рабочих камер на следующие:
поршневые - наиболее распространенные из всех компрессоров они, в свою очередь, могут быть различных видов: одинарного или двойного действия, смазываемые или без применения смазки (сухого трения), с разным количеством цилиндров и их расположением (горизонтальным, вертикальным, угловым).
роторные - с вращающим сжимающим элементом. К ним относятся:
винтовые, конструкция которых запатентована в 1934г., имеют ведущий и ведомый роторы, вращение которых совершается навстречу друг другу, уменьшая пространство между ними и корпусом. Винтовые компрессоры не имеют клапанов и неуравновешенных механических сил, что дает возможность работать с высокой скоростью вращения вала, т.е. получать большую производительность при малых габаритных размерах. Могут быть безмасляные, безмасляные с нагнетанием жидкости, маслозаполненные.
спиральные - с неподвижной и подвижной эксцентрической спиралями, установленные со сдвигом по фазе на 180° так, чтобы образовывались полости с изменяющимся объемом.
роторно-пластинчатые, рабочим органом которых является эксцентрично установленный в корпусе ротор с пластинами, которые могут перемещаться в радиальном направлении.
жидкостно-кольцевые, в которых ротор с фиксированными лопатками эксцентрично установлен в корпусе, частично заполненном жидкостью.
Лопастной компрессор – устройство динамического действия, в котором сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решетками лопастей. К лопастным компрессорам относятся:
радиальные (центробежные);
радиально-осевые (диагональные);
осевые. По степени достижения итогового давления компрессоры разделяют на устройства низкого давления (итоговое значение давления – 1 МПа.), среднего давления (итоговое значение давления может подниматься до 10 МПа.), высокого давления (до 100 МПа.), и, наконец, сверхвысокого давления (итоговое значение давления более 100 МПа.).
По принципу действия, в основе которого лежат особенности конструкции каждой модели, компрессоры делят на устройства мембранного типа, осевого, поршневого, ротационного, струйного и центробежного типа. Принцип функционирования ротационного и поршневого компрессорного оборудования практически идентичен – в обоих случаях процесс повышения давления протекает в рабочем цилиндре, однако в разное время.
В зависимости от свойств рабочей среды выделяют следующие виды компрессоров – воздушные, которые применяются для сжатия воздуха; газовые, применяемые, соответственно, для сжатия любых смесей газов; циркуляционные, которые обеспечивают необходимую для замкнутых технологических контуров циркуляцию газа. Так же существуют специальные виды компрессорного оборудования – многоцелевое, необходимое для переменного сжатия газов, и многослужебное, которое применяется при необходимости одновременного сжатия газов. В зависимости от способов эксплуатации машинных установок, в состав которых входит устройство повышения давления, компрессорное оборудование делят на передвижное, стационарное, транспортное, прицепное, переносное и самоходное.
В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.
Различают следующие основные типы ДВС:
поршневой двигатель внутреннего сгорания;
роторно-поршневой двигатель внутреннего сгорания;
газотурбинный двигатель внутреннего сгорания.
Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.
Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:
автономность;
универсальность (сочетание с различными потребителями);
невысокая стоимость;
компактность;
малая масса;
возможность быстрого запуска;
многотопливность.
Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:
высокий уровень шума;
большая частота вращения коленчатого вала;
токсичность отработавших газов;
невысокий ресурс;
низкий коэффициент полезного действия.
В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:
бензиновые двигатели;
дизельные двигатели.
Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.
Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.
Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:
корпус;
кривошипно-шатунный механизм;
газораспределительный механизм;
впускная система;
топливная система;
система зажигания (бензиновые двигатели);
система смазки;
система охлаждения;
выпускная система;
система управления.
Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.
Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.
Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.
Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.
Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.
Принцип работы двигателя внутреннего сгорания основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.
Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):
впуск;
сжатие;
рабочий ход;
выпуск.
Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).
На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.
На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.
Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.
При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.
Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия - порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.
Цикл Ренкина — термодинамический цикл преобразования тепла в работу с помощью водяного пара.
Цикл Ренкина был предложен в середине XIX века инженером и физиком У.Ренкином