
- •26. Газ в поле силы тяжести. Барометрическая формула. Распределение Больцмана.
- •25. Распределение Максвелла.
- •24. Уравнение Менделеева-Клапейрона. Газовые законы. Закон Дальтона.
- •Закон Дальтона — Давление смеси газов, не взаимодействующих друг с другом химически, равно сумме парциальных давлений этих газов.
- •22. Основные положения мкт (перечислить, привести доказательства). Молекулярная и молярная массы. Количество вещества. Закон Авогадро. Основное уравнение мкт. Основные положения мкт
- •Закон Авогадро
- •История
- •Следствия закона
- •21. Упругие волны. Уравнения плоской и сферической волн. Волновое уравнение. Энергия упругой волны. Стоячие волны. Звук. Скорость звука в газах.
- •Уравнение плоской волны
- •Уравнение сферической волны
- •Энергия, переносимая упругой волной
- •20. Гармонические колебания. Основные характеристики колебательного движения. Маятник. Затухающие колебания. Вынужденные колебания. Резонанс.
- •19. Движение тел в жидкостях и газах. Формула Стокса. Подъемная сила.
- •18. Вязкость жидкости (газа). Ламинарное и турбулентное течение. Число Рейнольдса.
- •17. Истечение жидкости из отверстия. Формула Торричелли.
- •Истечение жидкости через отверстия
- •16. Движение жидкости. Теорема о неразрывности струи. Уравнение Бернулли.
- •15. Реактивное движение. Уравнение Мещерского.
- •14. Абсолютно твердое тело. Вращение тела вокруг неподвижной оси. Момент инерции. Приведите примеры для кольца, диска и шара. Теорема Штейнера.
- •13. Силы инерции: центробежная сила, сила Кориолиса. Примеры действия этих сил.
- •12. Момент силы. Правило моментов.
- •11. Момент импульса частицы. Законы изменения и сохранения момента импульса частицы.
- •10. Центр масс (инерции). Уравнение движения центра масс твердого тела.
- •9. Работа и мощность в механике. Механическая работа и мощность
- •8. Механическая энергия частицы. Виды механической энергии. Закон сохранения механической энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •7. Сила тяжести, ее зависимость от географической широты местности. Свободное падение тел и ускорение свободного падения. Вес тела. Закон Всемирного тяготения.
- •5. Упругие силы. Закон Гука (рассмотрите два случая: упруго деформированной пружины и линейно деформированного стержня). Деформация. Виды простых деформаций. Упругая и пластическая деформации.
- •Изучение деформации
- •Причины возникновения деформации твёрдых тел
- •Упругая и пластическая деформация
- •4. Масса (определение, физический смысл). Импульс материальной точки. Законы изменения и сохранения импульса.
- •3. Динамика. Законы Ньютона. Инерциальные и неинерциальные системы отсчета. Виды взаимодействий.
- •Законы Ньютона в неинерциальных системах
- •Средняя и мгновенная скорость при движении точки по прямой
- •Среднее ускорение и мгновенное ускорение
- •34. Теорема Гаусса, ее применение.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •43. Магнитное поле в вакууме. Взаимодействие токов. Поле движущегося заряда. Взаимодействие токов.
20. Гармонические колебания. Основные характеристики колебательного движения. Маятник. Затухающие колебания. Вынужденные колебания. Резонанс.
Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата. В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.
Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.
Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
Наиболее
простой и содержательный пример
вынужденных колебаний можно получить
из рассмотрения гармонического
осциллятора
и вынуждающей силы, которая изменяется
по закону:
.
19. Движение тел в жидкостях и газах. Формула Стокса. Подъемная сила.
движение тел в жидкостях и газах:
Одной из важнейших задач аэро- и гидродинамики является исследование движения твердых тел в газе и жидкости, в частности изучение тех сил, с которыми среда действует на движущееся тело. Эта проблема приобрела особенно большое значение в связи с бурным развитием авиации и увеличением скорости движения морских судов.
На тело, движущееся в жидкости или газе, действуют две силы (равнодействующую их обозначим R), одна из которых (Rx) направлена в сторону, противоположную движению тела (в сторону потока), — лобовое сопротивление, а вторая (Ry) перпендикулярна этому направлению — подъемная сила (рис. 55).
Если тело симметрично и его ось симметрии совпадает с направлением скорости, то на него действует только лобовое сопротивление, подъемная же сила в этом случае равна нулю. Можно доказать, что в идеальной жидкости равномерное движение происходит без лобового сопротивления. Если рассмотреть движение цилиндра в такой жидкости (рис. 56), то картина линий тока симметрична как относительно прямой, проходящей через точки А и В, так и относительно прямой, проходящей через точки С и D, т. с. результирующая сила давления на поверхность цилиндра будет равна нулю.
Иначе обстоит дело при движении тел в вязкой жидкости (особенно при увеличении скорости обтекания). Вследствие вязкости среды в области, прилегающей к поверхности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы (нет плавно утончающейся хвостовой части), то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направленное противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противоположные стороны (рис. 57).
Лобовое сопротивление зависит от формы тела и его положения относительно потока, что учитывается безразмерным коэффициентом сопротивления Сx, определяемым экспериментально:
(33.1)
где — плотность среды; v — скорость движения тела; S — наибольшее поперечное сечение тела.
Составляющую Rx можно значительно уменьшить, подобрав тело такой формы, которая не способствует образованию завихрения.
Подъемная сила может быть определена формулой, аналогичной (33.1):
где Су — безразмерный коэффициент подъемной силы.
Для крыла самолета требуется большая подъемная сила при малом лобовом сопротивлении (это условие выполняется при малых углах атаки (угол к потоку); см. рис. 55). Крыло тем лучше удовлетворяет этому условию, чем больше величина К=Су/Сx называемая качеством крыла. Большие заслуги в конструировании требуемого профиля крыла и изучении влияния геометрической формы тела на коэффициент подъемной силы принадлежат «отцу русской авиации» Н. Е. Жуковскому (1847—1921).
СТОКСА ФОРМУЛА
-
1) формула, выражающая связь между потоком
векторного поля через двумерное
ориентированное многообразие и циркуляцию
этого поля по соответствующим образом
ориентированному краю этого многообразия.
Пусть S
-
ориентированная кусочно гладкая
поверхность,
-
единичная нормаль к поверхности S(в тех
точках, конечно, где она существует),
задающая ориентацию S,
и пусть край поверхности Sсостоит из
конечного числа кусочно гладких контуров.
Через
обозначен
край поверхности S,
ориентированный с помощью единичного
касательного к нему вектора
так,
чтобы получающаяся ориентация края
была
согласована с ориентацией v поверхности
S.
Если а= (
Р, Q, R)-
непрерывно дифференцируемое в окрестности
поверхности Sвекторное поле, то
Подъёмная сила — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. В соответствии с законом Бернулли, статическое давление среды в тех областях, где скорость потока более высока, будет ниже, и наоборот. Например, крыло самолета имеет несимметричный профиль (верхняя часть крыла более выпуклая), вследствие чего скорость потока по верхней кромке крыла будет выше, чем над нижней. Создавшаяся разница давлений и порождает подъёмную силу. Полная аэродинамическая сила — это интеграл от давления вокруг контура профиля крыла.
где:
Y — это подъёмная сила,
P — это тяга,
— граница профиля,
p — величина давления,
n — нормаль к профилю
Согласно теореме Жуковского, величина подъёмной силы пропорциональна плотности среды, скорости потока и циркуляции скорости потока.