- •26. Газ в поле силы тяжести. Барометрическая формула. Распределение Больцмана.
- •25. Распределение Максвелла.
- •24. Уравнение Менделеева-Клапейрона. Газовые законы. Закон Дальтона.
- •Закон Дальтона — Давление смеси газов, не взаимодействующих друг с другом химически, равно сумме парциальных давлений этих газов.
- •22. Основные положения мкт (перечислить, привести доказательства). Молекулярная и молярная массы. Количество вещества. Закон Авогадро. Основное уравнение мкт. Основные положения мкт
- •Закон Авогадро
- •История
- •Следствия закона
- •21. Упругие волны. Уравнения плоской и сферической волн. Волновое уравнение. Энергия упругой волны. Стоячие волны. Звук. Скорость звука в газах.
- •Уравнение плоской волны
- •Уравнение сферической волны
- •Энергия, переносимая упругой волной
- •20. Гармонические колебания. Основные характеристики колебательного движения. Маятник. Затухающие колебания. Вынужденные колебания. Резонанс.
- •19. Движение тел в жидкостях и газах. Формула Стокса. Подъемная сила.
- •18. Вязкость жидкости (газа). Ламинарное и турбулентное течение. Число Рейнольдса.
- •17. Истечение жидкости из отверстия. Формула Торричелли.
- •Истечение жидкости через отверстия
- •16. Движение жидкости. Теорема о неразрывности струи. Уравнение Бернулли.
- •15. Реактивное движение. Уравнение Мещерского.
- •14. Абсолютно твердое тело. Вращение тела вокруг неподвижной оси. Момент инерции. Приведите примеры для кольца, диска и шара. Теорема Штейнера.
- •13. Силы инерции: центробежная сила, сила Кориолиса. Примеры действия этих сил.
- •12. Момент силы. Правило моментов.
- •11. Момент импульса частицы. Законы изменения и сохранения момента импульса частицы.
- •10. Центр масс (инерции). Уравнение движения центра масс твердого тела.
- •9. Работа и мощность в механике. Механическая работа и мощность
- •8. Механическая энергия частицы. Виды механической энергии. Закон сохранения механической энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •7. Сила тяжести, ее зависимость от географической широты местности. Свободное падение тел и ускорение свободного падения. Вес тела. Закон Всемирного тяготения.
- •5. Упругие силы. Закон Гука (рассмотрите два случая: упруго деформированной пружины и линейно деформированного стержня). Деформация. Виды простых деформаций. Упругая и пластическая деформации.
- •Изучение деформации
- •Причины возникновения деформации твёрдых тел
- •Упругая и пластическая деформация
- •4. Масса (определение, физический смысл). Импульс материальной точки. Законы изменения и сохранения импульса.
- •3. Динамика. Законы Ньютона. Инерциальные и неинерциальные системы отсчета. Виды взаимодействий.
- •Законы Ньютона в неинерциальных системах
- •Средняя и мгновенная скорость при движении точки по прямой
- •Среднее ускорение и мгновенное ускорение
- •34. Теорема Гаусса, ее применение.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •43. Магнитное поле в вакууме. Взаимодействие токов. Поле движущегося заряда. Взаимодействие токов.
Закон Авогадро
[править | править исходный текст]
Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Закон Авога́дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро (1776—1856), профессором физики в Турине.
История
Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку. Он является автором законов о тепловом расширении газов и закона объемных отношений. Эти законы были объяснены в 1811 году итальянским физиком Амедео Авогадро.[1]
Следствия закона
Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём.
В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:
.
Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.
Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес[2] тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d — удельный вес[3] его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицу удельный вес водорода. Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём через С, мы из формулы имеем с другой стороны m = dC. Так как удельный вес пара определяется легко, то, подставляя значение d в формулу, выводится и неизвестный частичный вес данного тела.
Элементарный анализ, например, одного из полибутиленов указывает, в нём пайное отношение углерода к водороду, как 1 к 2, а потому частичный вес его может быть выражен формулой СН2 или C2H4, C4H8 и вообще (СН2)n. Частичный вес этого углеводорода тотчас определяется, следуя закону Авогадро, раз мы знаем удельный вес, т. е. плотность его пара; он определен Бутлеровым и оказался 5,85 (по отношению к воздуху); т. е. частичный вес его будет 5,85 · 28,9 = 169,06. Формуле C11H22 отвечает частичный вес 154, формуле C12H24 — 168, а C13H26 — 182. Формула C12H24 близко отвечает наблюдаемой величине, а потому она и должна выражать собою величину частицы нашего углеводорода CH2.
Молекуля́рная ма́сса (менее правильный термин: молекулярный вес) — масса молекулы, выраженная в атомных единицах массы. Численно равна молярной массе. Однако следует чётко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и различаются по размерности.
Молекулярные массы сложных молекул можно определить, просто складывая относительные атомные массы входящих в них элементов. Например, молекулярная масса воды (H2O) есть
MrH2O = 2 ArH + ArO ≈ 2·1+16 = 18 а. е. м.
Mr-молекулярная масса; Ar-атомная масса.
Молярные массы сложных молекул можно определить, суммируя молярные массы входящих в них элементов. Например, молярная масса воды (H2O) есть M(H2O) = 2 M(H) +M(O) = 2·1+16 = 18 (г/моль). Стоит отметить, что, например, молярная масса кислорода как элемента = 16 (г/моль), а в газообразном состоянии (O2) = 32 (г/моль). В системе СИ единицей измерения является килограмм на моль (кг/моль). Обозначается буквой M или греческой буквой мю (μ).
