- •26. Газ в поле силы тяжести. Барометрическая формула. Распределение Больцмана.
- •25. Распределение Максвелла.
- •24. Уравнение Менделеева-Клапейрона. Газовые законы. Закон Дальтона.
- •Закон Дальтона — Давление смеси газов, не взаимодействующих друг с другом химически, равно сумме парциальных давлений этих газов.
- •22. Основные положения мкт (перечислить, привести доказательства). Молекулярная и молярная массы. Количество вещества. Закон Авогадро. Основное уравнение мкт. Основные положения мкт
- •Закон Авогадро
- •История
- •Следствия закона
- •21. Упругие волны. Уравнения плоской и сферической волн. Волновое уравнение. Энергия упругой волны. Стоячие волны. Звук. Скорость звука в газах.
- •Уравнение плоской волны
- •Уравнение сферической волны
- •Энергия, переносимая упругой волной
- •20. Гармонические колебания. Основные характеристики колебательного движения. Маятник. Затухающие колебания. Вынужденные колебания. Резонанс.
- •19. Движение тел в жидкостях и газах. Формула Стокса. Подъемная сила.
- •18. Вязкость жидкости (газа). Ламинарное и турбулентное течение. Число Рейнольдса.
- •17. Истечение жидкости из отверстия. Формула Торричелли.
- •Истечение жидкости через отверстия
- •16. Движение жидкости. Теорема о неразрывности струи. Уравнение Бернулли.
- •15. Реактивное движение. Уравнение Мещерского.
- •14. Абсолютно твердое тело. Вращение тела вокруг неподвижной оси. Момент инерции. Приведите примеры для кольца, диска и шара. Теорема Штейнера.
- •13. Силы инерции: центробежная сила, сила Кориолиса. Примеры действия этих сил.
- •12. Момент силы. Правило моментов.
- •11. Момент импульса частицы. Законы изменения и сохранения момента импульса частицы.
- •10. Центр масс (инерции). Уравнение движения центра масс твердого тела.
- •9. Работа и мощность в механике. Механическая работа и мощность
- •8. Механическая энергия частицы. Виды механической энергии. Закон сохранения механической энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •7. Сила тяжести, ее зависимость от географической широты местности. Свободное падение тел и ускорение свободного падения. Вес тела. Закон Всемирного тяготения.
- •5. Упругие силы. Закон Гука (рассмотрите два случая: упруго деформированной пружины и линейно деформированного стержня). Деформация. Виды простых деформаций. Упругая и пластическая деформации.
- •Изучение деформации
- •Причины возникновения деформации твёрдых тел
- •Упругая и пластическая деформация
- •4. Масса (определение, физический смысл). Импульс материальной точки. Законы изменения и сохранения импульса.
- •3. Динамика. Законы Ньютона. Инерциальные и неинерциальные системы отсчета. Виды взаимодействий.
- •Законы Ньютона в неинерциальных системах
- •Средняя и мгновенная скорость при движении точки по прямой
- •Среднее ускорение и мгновенное ускорение
- •34. Теорема Гаусса, ее применение.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •43. Магнитное поле в вакууме. Взаимодействие токов. Поле движущегося заряда. Взаимодействие токов.
34. Теорема Гаусса, ее применение.
Пусть
поле создается точечным электрическим
зарядом q. Проведем замкнутую сферическую
поверхность площадью S (рис. 1), окружающую
этот заряд, центр которой совпадает с
точкой нахождения заряда. Вычислим
поток вектора напряженности через эту
поверхность. За положительное направление
нормали выберем направление внешней
нормали
.
В этом случае во всех точках сферической
поверхности E = const и cos
=
1.
Рис. 1
Модуль напряженности поля на расстоянии R от заряда
Площадь поверхности сферы
.
Следовательно, поток вектора напряженности через сферическую поверхность
Полученный результат будет справедлив и для поверхности произвольной формы, а также при любом расположении заряда внутри этой поверхности. Действительно, если окружить сферу произвольной замкнутой поверхностью (рис. 2, а — поверхность изображена штрихами), то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.
Если замкнутая поверхность произвольной формы охватывает заряд (рис. 2, б), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в поверхность, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линии, входящей в поверхность. Если же внутри поверхности площадью S1 (см. рис. 2) заряды отсутствуют, то поток напряженности через эту поверхность равен нулю (NS = 0).
Рис. 2
Если рассматриваемая поверхность охватывает не один, а несколько электрических зарядов, то под q следует понимать алгебраическую сумму этих зарядов (рис. 2) и
Эта формула выражает теорему Остроградского—Гаусса: поток вектора напряженности через замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на произведение электрической постоянной и диэлектрической проницаемости среды.
Применим эту теорему для расчета электростатических полей некоторых проводников.
Равномерно заряженная бесконечная плоскость
Пусть
—
поверхностная плотность заряда на
плоскости (рис. 3).
Рис. 3
В качестве поверхности площадью S выберем цилиндрическую поверхность, образующая которой перпендикулярна плоскости. Основания этого цилиндра расположены перпендикулярно линиям напряженности по обе стороны от плоскости. Так как образующие цилиндра параллельны линиям напряженности ( = 90°, cos = 0), то поток через боковую поверхность цилиндра отсутствует, и полный поток через поверхность цилиндра равен сумме потоков через два основания: N = 2ES. Внутри цилиндра заключен заряд q = S, поэтому, согласно теореме Остроградского-Гаусса,
где
=
1 (для вакуума), откуда следует, что
напряженность поля равномерно заряженной
бесконечной плоскости
Бесконечная равномерно заряженная нить
Пусть
—
линейная плотность заряда нити. Выделим
участок нити длиной
и
окружим его цилиндрической поверхностью,
расположенной так, что ось цилиндра
совпадает с нитью (рис. 4).
Рис. 4
Линии
напряженности электростатического
поля, создаваемого нитью в сечении,
перпендикулярном самой нити, направлены
перпендикулярно боковой поверхности
цилиндра, поэтому поток напряженности
сквозь боковую поверхность
,
где R — радиус цилиндра. Через оба
основания цилиндра поток напряженности
равен нулю (
= 90°, cos
= 0). Тогда полный поток напряженности
через выделенный цилиндр
Заряд,
находящийся внутри этого цилиндра,
.
Согласно теореме Остроградского—Гаусса, можно записать
Следовательно, модуль напряженности поля, создаваемого равномерно заряженной бесконечно длинной нитью на расстоянии R от нее,
