- •26. Газ в поле силы тяжести. Барометрическая формула. Распределение Больцмана.
- •25. Распределение Максвелла.
- •24. Уравнение Менделеева-Клапейрона. Газовые законы. Закон Дальтона.
- •Закон Дальтона — Давление смеси газов, не взаимодействующих друг с другом химически, равно сумме парциальных давлений этих газов.
- •22. Основные положения мкт (перечислить, привести доказательства). Молекулярная и молярная массы. Количество вещества. Закон Авогадро. Основное уравнение мкт. Основные положения мкт
- •Закон Авогадро
- •История
- •Следствия закона
- •21. Упругие волны. Уравнения плоской и сферической волн. Волновое уравнение. Энергия упругой волны. Стоячие волны. Звук. Скорость звука в газах.
- •Уравнение плоской волны
- •Уравнение сферической волны
- •Энергия, переносимая упругой волной
- •20. Гармонические колебания. Основные характеристики колебательного движения. Маятник. Затухающие колебания. Вынужденные колебания. Резонанс.
- •19. Движение тел в жидкостях и газах. Формула Стокса. Подъемная сила.
- •18. Вязкость жидкости (газа). Ламинарное и турбулентное течение. Число Рейнольдса.
- •17. Истечение жидкости из отверстия. Формула Торричелли.
- •Истечение жидкости через отверстия
- •16. Движение жидкости. Теорема о неразрывности струи. Уравнение Бернулли.
- •15. Реактивное движение. Уравнение Мещерского.
- •14. Абсолютно твердое тело. Вращение тела вокруг неподвижной оси. Момент инерции. Приведите примеры для кольца, диска и шара. Теорема Штейнера.
- •13. Силы инерции: центробежная сила, сила Кориолиса. Примеры действия этих сил.
- •12. Момент силы. Правило моментов.
- •11. Момент импульса частицы. Законы изменения и сохранения момента импульса частицы.
- •10. Центр масс (инерции). Уравнение движения центра масс твердого тела.
- •9. Работа и мощность в механике. Механическая работа и мощность
- •8. Механическая энергия частицы. Виды механической энергии. Закон сохранения механической энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •7. Сила тяжести, ее зависимость от географической широты местности. Свободное падение тел и ускорение свободного падения. Вес тела. Закон Всемирного тяготения.
- •5. Упругие силы. Закон Гука (рассмотрите два случая: упруго деформированной пружины и линейно деформированного стержня). Деформация. Виды простых деформаций. Упругая и пластическая деформации.
- •Изучение деформации
- •Причины возникновения деформации твёрдых тел
- •Упругая и пластическая деформация
- •4. Масса (определение, физический смысл). Импульс материальной точки. Законы изменения и сохранения импульса.
- •3. Динамика. Законы Ньютона. Инерциальные и неинерциальные системы отсчета. Виды взаимодействий.
- •Законы Ньютона в неинерциальных системах
- •Средняя и мгновенная скорость при движении точки по прямой
- •Среднее ускорение и мгновенное ускорение
- •34. Теорема Гаусса, ее применение.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •43. Магнитное поле в вакууме. Взаимодействие токов. Поле движущегося заряда. Взаимодействие токов.
15. Реактивное движение. Уравнение Мещерского.
Законы Ньютона позволяют объяснить очень важное механическое явление -реактивное движение. Так называют движение тела, возникающее при отделении от него с какой-либо скоростью некоторой его части.
Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактивное движение.
По принципу реактивного движения передвигаются некоторые представители животного мира, например кальмары и осьминоги. Периодически выбрасывая вбираемую в себя воду, они способны развивать скорость до 60-70 км/ч. Аналогичным образом перемещаются медузы, каракатицы и некоторые другие животные.
Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды "бешеного" огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами, сами огурцы при этом отлетают в противоположном направлении.
На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат, состоящий из сотен тысяч и миллионов деталей. Масса ракеты огромна Она складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной или, как говорят, "сухой" массы ракеты, остающейся после выброса из ракеты рабочего тела.
"Сухая" масса ракеты, в свою очередь, состоит из массы конструкции (т. е. оболочки ракеты, ее двигателей и системы управления) и массы полезной нагрузки (т. е. научной аппаратуры, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения корабля).
По
мере истечения рабочего тела освободившиеся
баки, лишние части оболочки и т. д.
начинают обременять ракету ненужным
грузом, затрудняя ее разгон. Поэтому
для достижения космических скоростей
применяют составные (или многоступенчатые)
ракеты (рис. 21). Сначала в таких ракетах
работают лишь блоки первой ступени 1.
Когда запасы топлива в них кончаются,
они отделяются и включается вторая
ступень 2; после исчерпания в ней топлива
она также отделяется и включается третья
ступень 3. Находящийся в головной части
ракеты спутник
или какой-либо другой космический
аппарат укрыт головным обтекателем 4,
обтекаемая форма которого способствует
уменьшению сопротивления воздуха при
полете ракеты в атмосфере
Земли.
Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Почему это происходит?
Согласно третьему закону Ньютона, сила F, с которой ракета действует на рабочее тело, равна по величине и противоположна по направлению силе F', с которой рабочее тело действует на корпус ракеты: F' = F (12.1) Сила F' (которую называют реактивной силой) и разгоняет ракету.
Cообщаемый
телу импульс
равен произведению силы на время ее
действия. Поэтому одинаковые силы,
действующие в течение одного и того же
времени, сообщают телам равные импульсы.
В данном случае импульс mpVp
приобретаемый ракетой, должен быть
равен импульсу mгазVгаз
выброшенных газов:
mpVp =
mгазVгаз,
Отсюда следует,
что скорость ракеты
Проанализируем
полученное выражение. Мы видим, что
скорость ракеты тем больше, чем больше
скорость выбрасываемых газов и чем
больше отношение массы рабочего тела
(т. е. массы топлива) к конечной ("сухой")
массе ракеты.
Уравнение Мещерского — основное уравнение в механике тел переменной массы, полученное И. В. Мещерским в 1897 году[1] для материальной точки переменной массы (состава).
Уравнение обычно записывается в следующем виде:
где:
—
масса материальной
точки,
изменяющаяся за счет обмена частицами
с окружающей средой, в произвольный
момент времени t;
—
скорость движения материальной
точки переменной массы;
—
результирующая внешних сил, действующих
на материальную
точку переменной массы
со стороны её внешнего окружения (в том
числе, если такое имеет место, и со
стороны среды, с которой она обменивается
частицами, например электромагнитные
силы — в случае массообмена с
магнитной средой, сопротивление среды
движению и т. п.);
—
относительная скорость присоединяющихся
частиц;
—
относительная скорость отделяющихся
частиц;
,
—
скорости массообмена присоединяющихся
и отделяющихся частиц.
