- •1. Введение в теорию систем
- •2. Аксиомы
- •3.Принцип задания цели.
- •4.Принцип выполнения действия.
- •5.Принцип независимости результата действия.
- •6.Закон сохранения.
- •7. Основные характеристики систем
- •8.Простая системная функциональная единица.
- •9.Простейший блок управления (прямая положительная связь).
- •10.Простой блок управления (отрицательная обратная связь).
- •11.Основные понятия теории сложности. Сложность
- •12.Основные понятия теории сложности. Иерархия
- •13.Типовая структура сложной системы
- •14.Эквивалентная структура сложной системы (Даймонд–структура)
- •15. Асутп.
- •16.Типовая функциональная схема и примеры асутп
- •17.Асутп с информационным типом функционирования
- •22. Обобщенная структура локального регулятора сар. Проблемы управления.
- •23. Типовая функциональная схема локального регулятора. Состав элементов
- •24. Основные типы локальных регуляторов
- •25. Импульсные системы
- •26. Релейные системы
- •29. Гармоническое воздействие
- •3.3.5 Наблюдаемость
- •30. Основные виды математических моделей
- •31. Решетчатые функции
- •32. Разностные уравнения.
- •33. Математическая модель системы
- •34. Линеаризация математической модели
- •35. Преобразование Фурье
- •36. Преобразование Лапласа непрерывных функций
- •38. Основные свойства преобразования Лапласа и z-преобразования
- •39. Дискретные математические модели
- •40. Непрерывные математические модели
- •42. Необходимые и достаточные условия устойчивости линейных стационарных систем
- •43. Первое определение системы
- •44. Сложности выявления целей
- •45.Модель "черного ящика"
- •46.Модель состава системы
- •47.Модель структуры системы
- •48.Структурная схема системы
- •49.Динамические модели систем
- •50.Классификация систем по их происхождению
- •54.Понятие большой и сложной системы
- •58.Многоэшелонные системы: организационные иерархии
- •59.Зависимость между уровнями и координируемость
- •60.Формальное определение абстрактной системы
39. Дискретные математические модели
Применяя к уравнению (Ⅰ) пункта № 4.1.1.1.2 Z-преобразование, с учётом свойств линейности и теоремы сдвига при нулевых начальных условиях получим:
(I*)
Непрерывные математические модели
Математическая модель системы может быть получена на основе математических моделей подсистем, образующих данную систему.
Применяя к уравнению (Ⅱ) пункта № 4.1.1.2.2 преобразование Лапласа при нулевых начальных условиях, с учётом свойств линейности и дифференцирования получим:
(II*)
40. Непрерывные математические модели
Математическая модель системы при этом приводится к стандартному виду (или форме Коши):
(1)
Система уравнений (1) — это уравнение состояния в развёрнутой форме.
Соответствующая системе уравнений (1) структура системы:
В матричной форме систему уравнений (1) можно записать в следующем виде:
(2)
Здесь X, Y — вектора соответственно состояния и управления (смотри выше):
A — матрица системы; B — матрица управления.
Уравнению состояния (2) соответствует следующая структура системы:
Система уравнений (1) и уравнение (2) соответствуют случаю, когда в качестве выходных переменных рассматриваются все переменные состояния.
В
общем же случае количество выходных
переменных зависит от рассматриваемой
задачи и определяется линейной
комбинацией переменных состояний
и входных переменных (управляющих
воздействий)
.
Поэтому уравнение состояния системы в развёрнутой форме примет следующий вид:
(3)
Количество
выходных переменных
зависит от решаемой задачи.
Системе уравнений (3) будет соответствовать следующая структура системы:
В матричной форме уравнение состояния системы выглядит так:
(4)
Уравнению состояния (4) соответствует следующая структура системы:
Z(t)
— вектор выхода
С — матрица системы; D — матрица управления.
Пример 1.
Записать уравнения состояния в развёрнутой и матричной формах, составить схему (структуру) системы в переменных состояния непрерывной системы, математическая модель которой следующая:
.
Решение.
1. Вводим переменные состояния:
,
,
…,
.
2. Запишем уравнение состояния системы в развёрнутой форме Коши:
3. Запишем уравнение состояния в матричной форме:
4. Составляем структуру системы в переменных состояния:
Пример 2.
Смотри
условие примера 1, но
.
Решение.
1. Вводим переменные состояния:
, .
2. Запишем уравнение состояния системы в развёрнутой форме Коши:
3. Запишем уравнение состояния в матричной форме:
4. Составляем структуру системы в переменных состояния:
Пример 3.
По структуре системы в переменных состояния записать уравнения состояния в развёрнутой и матричной формах.
1.)
2.)
3.)
4.)
В замкнутой динамической системе выходной сигнал не может появиться на входе мгновенно для противодействия входному сигналу. Это обусловлено тем, что энергия в подсистемах не может изменяться мгновенно, то есть существует запаздывание. Энергия колеблется относительно некоторого уровня и при определённых условиях система из источника подавления колебаний становится их генератором, то есть оказывается неустойчивой.
41. Понятие устойчивости по А. М. Ляпунову(1892 год.)
Рассмотрим непрерывную многомерную систему в свободном движении, математическая модель которой следующая:
… (1)
Здесь Xi — любая линейная или нелинейная функция, а xi — обобщённая фазовая координата или переменная состояния системы n-мерного порядка (фазовые координаты).
В n-мерном фазовом пространстве (пространстве состояний) в фиксированный момент времени xi определяют состояние системы в виде точки с соответствующими координатами, например, при n=3:
|
M(x) — изображающая точка. В переходном режиме изображающая точка описывает некоторую траекторию, которую назовём фазовой. |
Проекции вектора скорости изображающей точки на оси — левые части уравнений (1), следовательно, о поведении системы в переходном режиме можно судить по правым частям уравнений (1).
Так, например, если n=2, имеем фазовую плоскость:
Исключая
из этой системы время t,
получим:
Интегрируя это уравнение, получим семейство фазовых траекторий (фазовый портрет) системы, каждая из которых соответствует определённому значению постоянной интегрирования.
Фазовый портрет полностью определяет основные свойства свободного движения системы.
|
Пусть в начальный
момент времени изображающая точка
M(xi0)
при t=0
начала двигаться по некоторой
невозмущённой фазовой траектории
|
Таким
образом, движение системы устойчиво,
если при сдвиге начального положения
изображающей точки на величину не более
малой положительной величины
(*)
возмущённое движение в последующие
моменты времени будет отличаться от
невозмущённого на величину не более
сколь угодно малой величины
(**).
В противном случае движение системы не устойчиво.
Если
при этом выполняется условие
(***),
то движение асимптотически устойчиво.
Следовательно, по Ляпунову оценивается
устойчивость системы при достаточно
малых начальных отклонениях. Линейная
стационарная система, устойчивая “в
малом”, будет устойчива и “в большом”.
