- •1.Биофизика пәні медицина үшін маңызы
- •2 Биологиялық мембрананың негізгі қызметтері
- •3 3Бм туралы ғылыми болжамдардың даму тарихи
- •6 Жасуша мембранасының құрылысы
- •8 Бм ақуыздар мен липидтер, түрлері
- •12. Жасанды Мембраналар түрлері
- •14. Жасушаның өткізгіштігі туралы түсінік.
- •15.Пассивті және активті тасмалдау
- •17. Диффузия
- •19 Нернст-Планк теңдеуі
- •20. Жеңілдеттілген диффузия
- •21. Осмос.
- •22.Осмос құбылысының медициналық маңызы
- •24. Активті тасмалдау
- •25. Активті тасмалдау механизмі
- •26. Иондық насостар, түрлері
- •28. Иондық каналдар арқылы тасмалдау
- •29. Потенциалға тәуелді иондық канал
- •31. Патенциал туралы түсінік. Патенциалдың түрлері
- •32. Диффузиялық потенциал. Гендерсон теңдеуі
- •33. Тыныштық потенциалының пайда болу механизмі
- •34 Тыныштық патенциалы үшін Гольдман-Ходжкин- Катц теңдеуі
- •35. Әрекет потенциалының пайда болу механизмі
- •36 Әрекет патенциалы үшін Ходжкин-хаксли теңдеуі
- •37.Әрекет патенциалының нерв талшығы бойымен таралуы
- •38. Әрекет патенциалының миелинді нерв талшығымен таралу ерекшелігі
- •39.Секірмелі немесе сальтаторлы таралу. Ранвье үзілісі
- •40. Кардиомиоциттегі әрекет потенциалы туралы түснік
- •41. Кардиомиоциттегі әрекет потенциалының пайда болу механизмі
- •42. Кардиомиоциттегі потенциал фазалары
- •43.Кардиомицит потенциалын зерттец әдістері
- •48.Тәуліктік экг. Холтер мониторингі
- •49. Электрографияның түрлері :
- •50. Кардиостимулятор
- •51. Биологиялық және электрлік емес сигналдарды тіркеу
- •60. Сұйықтықтың тұтқырлығы үшін Ньютон теңдеуі
- •63. Турбуленті ағыстың медицинада қолдану
- •67.Ньютондық емес сұйықтар
- •68.Гемодинамика туралы түсінік
- •71.Қан ағысындағы «Фареуса-Линдквиста» эффектісі
- •77.Қан қысымының тәуліктік мониторинги
- •78.Ағза ұлпасының испедансы
- •83.Ерітіндінің оптикалық тығыздығы
- •84.Жұтылу спектрлері
- •85.Спектрофотометрия кфк-2 құралы
- •87.Люминесценция түрлері
- •91.Фотобиологиялық реакциялар түрлері
- •95.Адам көзінің оптикалық жүйесі
- •104.Иондаушы сәулелер әсерін өлшеу.Дозаметрия
- •109.Сапа коффициенті к.
- •110.Доза қуаты.Өб
- •112.Тұрақты тоқтың биологиялық әсері
- •113.Гальванизация және электрофорез аппараты: Поток-2
- •114.Айнымалы токтың биологиялық әсері
- •115. Жоғары Жиілікті токтың биологиялық әсері
- •117.Аса жоғары жиілікті токтың биологиялық әсері
- •118. Жж токтың жылулық және жылулық емес әсері
- •119.Тұрақты және айнымалы магнит өрісінің денеге әсері
- •120.Магниттік терапия құралы: Полюс-101, Алим-1,Магниттер ж.Б
- •123.Лазер сәулесін медицинада қолдану.
- •124.Аудиометрия,медицинада қолданылуы.
- •125. Электроэнцофалография,медицинада қолданылуы
- •126. Медициналық техникаларды жіктеу: диагностикалық және терапиялық
- •127. Медициналық құралдардың қауіпсіздігі мен сенімділігі
- •128.Төменгі жиілікті терапиялық...
- •131. Аса жоғары жиіліктегі терапиялық құралы Луч-2,Волна және басқалары.
- •132 Ультра дыбыс,оның таралу қасиеттері.
- •133.Ультрадыбыс,оны медициналық зерттеуде қолдану
- •135. Доплер құбылысы,мед.Қолдану
3 3Бм туралы ғылыми болжамдардың даму тарихи
«Мембрана» термині ХІХ ғасырдың орта бөлігінде пайда болды және бұл арқылы жасушаны қоршаған ортадан бөліп тұрған, жартылай өткізгішік қасиеті бар жұқа қабатты атаған. 1851 жылы физиолог Х.Моль өсімдік жасушасы плазмолизін зерттеп, оның қабырғасының мембранаға тән қасиеті бар екендігін анықтаған. 1855 жылы ботаник К.Негели жасушаның толық қанды өмір сүруіне мембрананың жартылай өткізгіштік қасиетінің маңызды екендігін, осы арқылы жасуша ішінде осмостық қысымың қалыпты жағдайда болатындығын мәлімдеді. 1890 жылы неміс зерттеушісі В.Пфеффер алғаш рет «жасуша немесе плазмалық мембрана» терминін енгізді.
1925 жылы Гортер мен Грендель гемолизденген эритроциттен ацетон арқылы липидті бөліп алған. Алынған ертіндіні судың бетіне құйған, булану нәтижесінде су бетінде пайда болған липид молекулаларының алып жатқан аймағының ауданы, тәжірибе басында алынған эритроциттердің ауданынан екі есе көп болған. Осының негізінде мембранадағы липидтер екі қабат болып орналасқан деген қорытынды жасалды, 1935 жылы Дж.Даниэлли мен Г.Давсон биологиялық мембрананың «бутерброд» тәрізді мембрананың жобасын ұсынды. Ол үш қабаттан, яғни ортасында екі қатар(биқатар) болып липидтер орналасқан, бұл қабаттың екі жағына ақуыздар жабысып орналасқан Қазіргі уақытта 1972 жылы Никольсон мен Сингер ұсынған, 1981 жылы Сингер одан ары жетілдірген биомембрананың «сұйық-мозайкалы» моделі қолданылуда. Бұл моделге сәйкес биологиялық мембрананың негізі - липидтер, олар бір біріне перпендикуля түрде, екі қатар болып орналасқан, ал ақуыздардың кейбірі липид қабатына жабысып, кейбірі оған батып немесе оны толығымен тесіп орналасқан
4 БМ түрлері моделдері 1935 жылы Дж.Даниэлли мен Г.Давсон биологиялық мембрананың «бутерброд» тәрізді мембрананың жобасын ұсынды. Ол үш қабаттан, яғни ортасында екі қатар(биқатар) болып липидтер орналасқан, бұл қабаттың екі жағына ақуыздар жабысып орналасқан Қазіргі уақытта 1972 жылы Никольсон мен Сингер ұсынған, 1981 жылы Сингер одан ары жетілдірген биомембрананың «сұйық-мозайкалы» моделі қолданылуда. Бұл моделге сәйкес биологиялық мембрананың негізі - липидтер, олар бір біріне перпендикуля түрде, екі қатар болып орналасқан, ал ақуыздардың кейбірі липид қабатына жабысып, кейбірі оған батып немесе оны толығымен тесіп орналасқан
5 БМ сұйық мозайкалы моделі Қазіргі уақытта 1972 жылы Никольсон мен Сингер ұсынған, 1981 жылы Сингер одан ары жетілдірген биомембрананың «сұйық-мозайкалы» моделі қолданылуда. Бұл моделге сәйкес биологиялық мембрананың негізі - липидтер, олар бір біріне перпендикуля түрде, екі қатар болып орналасқан, ал ақуыздардың кейбірі липид қабатына жабысып, кейбірі оған батып немесе оны толығымен тесіп орналасқан фосфолипид биқабаты, 2- фосфолипид молекуласының гидрофильді полярлы басы, 3- фосфолипид молекуласының гидрофобты құйрығы, 4- интегралды ақуыздар, 5- гликолипид, 6- перифериялық ақуыздар, 7- иондық канал, 8- пор(саңлау), 9- ақуызға жабысқан микротүткіше.
