
- •Типы взаимосвязи между явлениями. Функц. И коррел. Связь.
- •2. Типы данных и типы моделей. Специфика экон. Данных. Системы эконометрич. Уравнений.
- •3. Ковариация между переменными. Формула расчета ковариации.
- •4.Коэффициент парной корреляции
- •5.Качественная оценка коэф. Парной корреляции. Шкала Чеддока.
- •6. Оценка значимости линейного коэффициента корреляции с помощью t-критерия Стьюдента.
- •7. Матрица коэффициентов парной корреляции, ее структура, экономическая сущность.
- •8. Коэффициент множественной корреляции, приделы его измерения.
- •10. Частный коэффициент множественной корреляции, пределы его измерения
- •11.Оценка тесноты нелинейной связи, индекс корреляции
- •12.Регрессионные модели. Общие предпосылки рег. Анлиза.
- •13. Алгоритм построения и анализа регрессионных моделей
- •14. Основные предпосылки мнк
- •15. Свойства оценок параметров регрессионной модели
- •16. Оценка параметров регрессионного уравнения с помощью метода наименьших квадратов
- •17. Оценка параметров линейной модели парной регрессии. Расчетные формулы
- •18. Матричная форма модели парной регресии и формула расчета ее парметров
- •19. Оценка качества уравнения регрессии
- •20. Коэффициент детерминации и коэффициент корреляции, их расчет в модели парной регересии.
- •22. Проверка значимости уравнения регрессии в целом. F-критерий Фишера.
- •23. Уровень значимости и степени свободы пр проверке значимости уравнения регрессии.
- •26. Оценка статистической значимости коэффициентов регрессии
- •27. Доверительные интервалы параметров регрессии
- •41. Способы обнаружения мультиколлинеарности. Обнаружение мультиколлинеарности с помощью алгоритма Феррара-Флобера: критерий Пирсона , критерий Фишера, критерий Стьюдента.
- •42. Понятие гомо- и гетероскедастичности
- •43. Критерий обнаружения гетероскедастичности.
- •44. Тест Гольдфельда-Квандта для обнаружения гетероскедастичности.
- •45. Обобщенный мнк и его отличие от классического мнк (метод Эйткена).
- •46. Автокорреляция в регрессионных моделях. Причины, последствия, методы устранения.
- •47. Метод обнаружения автокорреляции. Метод рядов для обнаружения автокорреляции.
- •48. Критерий Дарбина-Уотсона.
- •49. Коэффициент автокорреляции первого порядка и его применение для раскрытия неопределенности в критерии Дарбина-Уотсона.
- •50. Регрессионные уравнения с переменной структурой. Фиктивные переменные. Виды фиктивных переменных, преимущества использования.
- •51. Использование фиктивных переменных для исследования структурных изменений. Моделирование сезонности. Количество бинарных переменных при к градациях.
- •52. Модель задачи об оптимальном использовании средств, представленной в виде регрессионной модели
- •57. Система рекурсивных регрессионных уравнений. Ее формальная запись. Метод решения.
- •59. Приведенная форма модели одновременных регрессионных уравнений. Причины, вызывающие необходимость построения приведенной формы модели.
- •64. Алгоритм косвенного метода решения систем одновременных уравнений.
- •65. Алгоритм двухшагового метода наименьших квадратов для решения систем одновременных регрессионных уравнений
- •66. Понятие динамического ряда, временного ряда. Его обозначение. Составляющие временного ряда. Виды моделей представления временного ряда.
- •67. Процедуры предварительного анализа временных рядов.
- •72 Моделирование экономических процессов, подверженных колебаниям. Критерии проверки наличия сезонных колебаний.
- •73 Фильтрация компонентов тренд-сезонных колебаний временного ряда
- •74 Адаптивные модели прогнозирования: сс модель и ар модель
20. Коэффициент детерминации и коэффициент корреляции, их расчет в модели парной регересии.
Величина r2 называется коэффициентом детерминации. Он определяет долю вариации одной из переменных, которая объясняется вариацией другой переменной.
Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона), Коэффициент корреляции рассчитывается по формуле[10][8]:
где
,
—
среднее значение выборок.
Коэффициент корреляции изменяется в пределах от минус единицы до плюс единицы. С помощью множественного коэффициента корреляции характеризуется совокупное влияние всех факторных переменных на результативную переменную в модели множественной регрессии.
Коэффициент множественной корреляции для линейной модели множественной регрессии с n факторными переменными рассчитывается через стандартизированные частные коэффициенты регрессии и парные коэффициенты корреляции по формуле:
где r (yxi) – парный (не частный) коэффициент корреляции между результативной переменной у и факторной переменной xi.
|
|
где r (yxi) – парный (не частный) коэффициент корреляции между результативной переменной у и факторной переменной xi
21. Средняя относительная ошибка аппроксимации Величина отклонений фактических и расчетных значений результативного признака по каждому наблюдению представляет собой ошибку аппроксимации.
Поскольку может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению определяют среднюю ошибку аппроксимации:
22. Проверка значимости уравнения регрессии в целом. F-критерий Фишера.
Значимость уравнения регрессии, т.е. соответствие эконометрической модели Y = aˆ0 + aˆ 1X + e фактическим (эмпирическим) данным, позволяет ус-
тановить, пригодно ли уравнение регрессии для практического использования (для анализа и прогноза), или нет.
Для проверки значимости уравнения используется F - критерий Фишера. Он вычисляется по фактическим данным как отношение несмещенной
дисперсии
остаточной компоненты к дисперсии
исходного ряда. Проверка
значимости коэффициента детерминации
осуществляется с помощью
-критерия
Фишера, расчетное значение которого
находится по формуле:
,
,
где
коэффициент множественной корреляции,
– количество наблюдений,
- количество переменных,
– диагональный элемент матрицы
.
Для проверки гипотезы по таблице определяют табличное значение
критерия Фишера F .
F( α ν1 ν2) – это максимально возможное значение критерия в зависимости от влияния случайных факторов при данных степенях свободы
ν = m1, ν2 = n − m −1, и уровне значимости α . Здесь m – количество аргументов в модели.
Уровень значимости α – вероятность отвергнуть правильную гипотезу, но при условии, что она верна (ошибка первого рода). Обычно α принимается равной 0,05 или 0,01.
Если Fф> Fтабл , то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если наоборт, то гипотеза H0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.